汽车缸内均质混合气的3种模式的过程
发布网友
发布时间:2023-02-15 19:36
我来回答
共4个回答
热心网友
时间:2023-09-23 15:25
什么是进气道喷射?缸内直喷之前发动机的燃油是先喷到进气管内,然后在进气管内与空气混合成为燃油混合气,最后再进入气缸内参与燃烧。
什么是缸内直喷?就是将喷油器由进气管道里移到了发动机缸内,直接在缸内与空气混合再参与燃烧,说白了就是空气与燃油分两路进入发动机气缸。直喷技术最大的好处就是能让压缩比提高,从而提升发动机的燃烧热效率。
什么是混合喷射技术?采用缸内直喷技术后,燃油经济性和动力性得到提升,但排放处理难度更大,起动和低温下的碳氢化合物,颗粒,中小负荷下的氮氧化物的处理增加了技术难度和成本。为了解决排放问题,就将进气管喷射和缸内直喷结合起来组成了混合喷射。其结构如下。
混合喷射系统的结构示意图
二、缸内直喷详解
要 理解为什么采用混合喷油模式,就得了解进气口喷射模式和缸内喷射模式的优缺点开始。在国家排放和油耗法规的要求下,传统的进气道喷射存在燃烧效率低,经济 性差等特点,Cartech8就不详细介绍进气道喷射发动机了,大家对这应该比较熟悉。我们重点介绍缸内直喷的工作控制过程,从中找出缸内直喷的优点,以 及缺点。然后分析两者为什么要结合到一起。下图是缸内直喷的结构及工作原理图。
缸 内直喷就是将燃油喷嘴安装于气缸内,直接将燃油喷入气缸内与进气混合。喷射压力也进一步提高,使燃油雾化更加细致,同时喷嘴位置、喷油时刻、喷雾形状、进 气气流控制,以及活塞顶形状等特别的设计,真正实现了精准地按比例控制喷油并与进气混合,使得燃烧效率更高。另外,喷入缸内的燃油吸收缸内热量,降低发动 机发生爆燃敲缸的倾向,可以进一步增加发动机压缩比。通常缸内直喷发动机配备涡轮增压,这些措施解决了进气道喷射发动机系统的主要缺点,即发动机在部分负 荷运行中的泵气损失大(发动机大部分在城市道路中工作于部分负荷工况),燃油经济性差。通常缸内直喷发动机工作于三种工作模式:分层充气模式、均质充气模 式、均质稀薄充气模式。三者的工作区域如下图。
缸内直喷三种模式的工作区域
分层充气模式:
中 小负载、中小转速区域内,发动机一直运行在分层充气模式中。空气由进气管进入汽缸撞在活塞顶部,由于活塞顶部制作成特殊的形状从而在火花塞附近形成期望中 的涡流。当压缩过程接近尾声时,少量的燃油由喷射器喷出,形成可燃气体。这种分层注油方式可充分提高发动机的经济性,因为在转速较低、负荷较小时除了火花 塞周围需要形成浓度较高的油气混合物外,燃烧室的其它地方只需空气含量较高的混合气即可。现在一些发动机为了改善燃烧,降低NOx的生成采用的两次甚至多 次喷射,见下图:
在 分层充气模式中为了尽可能地降低节气门损耗,节气门将尽可能地开大。节气门不能完全开启,因为碳罐和废气再循环系统需要一定的真空度。喷油过程发生在压缩 冲程的大约最后三分之一时。在此模式中,发动机产生的扭矩仅由被喷入的燃油量确定,进气空气质量和点火提前角产生的影响很小。通过燃烧室中的混合分层,发 动机过量空气系数(lambda)约1.6 至3 的范围内运行。
进入该模式条件:如果满足这些条件,发动机就能切换至分层充气模式。
- 发动机在相应的负载和转速区域中,
- 系统中没有与废气排放相关的故障
- 冷却液温度高于一定值。
- 氮氧化物传感器准备就绪, 氮氧化物存储式催化转换器的温度在 250 °C 至500 °C 之间。
均质充气模式
如 上图,发动机工作于高转速区域,或者低转速大负荷区域,其工作模式和原来的进气道模式基本上一样,主要差别是,汽油直接喷射发动机中的燃油是被直接喷入气 缸的。该模式,节气门的开度取决于油门踏板的位置(如何控制可参考Cartech8的另外一篇文章《动力性匹配之几张表搞定一辆车的动力性》)。发动机的 扭矩是由点火点(短期)和进气控制质量(长期)决定的。喷入的燃油量与进气量相匹配,从而使得空燃比Lambda=1左右。在均质充气模式中,点火点是影 响发动机的扭矩,燃油消耗和排放行为的主要因素。
喷油周期在进气冲程中,燃油在上止点前约300 度时被直接喷入气缸中。燃油蒸发需要的能量被从燃烧室内部的空气中吸收,从而使得空气得到冷却。结果,与带进气歧管喷射发动机的压缩率相比,压缩率得到更大的提高。
均质稀薄充气模式
这 种模式是在分层充气模式和均质充气模式之间的过渡区域。在这种模式中,短期的扭矩需求是通过点火角来实现的,长期需求则通过空气质量实现的。这些稀薄的混 合物被均质地(均匀地)分布在燃烧室中。空气/燃油混合比约为Lambda 1.55.左右。喷油周期,在进气冲程中,燃油在上止点前约300 度时被直接喷入气缸。由于喷油点提前,就给预点火混合物的形成留出了更多的时间,从而导致燃烧室中均质混合物的分布。
三种工作模式中节气门的开度
缸内直喷的优势:
1.节气门开度较进气道喷射发动机开度增加,泵气损失减少。发动机自身损失减少。
2.发动机稀薄燃烧提高燃油经济性。
3.压缩比增加,发动机热效率提高。与同排量的一般发动机相比功率与扭矩都提高了10%以上。
4.喷射压力也进一步提高,使燃油雾化更加细致,真正实现了精准地按比例控制喷油并与进气混合。
5. 进气口喷射发动机,20%喷嘴装在气缸盖上进气门的背面,80%安装在进气歧管上靠近气缸盖位置,在发动机起动时,会在进气门附近形成瞬时的液态油膜,这 些燃油会在每次进气过程逐渐蒸发进入气缸燃烧。冷机起动时由于燃油蒸发困难,使得实际供油量远大于需求空燃比的供油量,这样会导致冷起动时发动机有4 个~10个循环的不稳定燃烧,显著加大发动机未燃HC排放。而缸内直喷可以克服这个问题。
6.缸内直喷发动机加减速时不需要补偿油膜。之所以需要加减速修正,主要原因是进气道喷射存在燃油油膜,当负荷快速变化,油膜平衡改变,需要在短时间内通过喷射量来进行修正;次要原因是为了弥补传感器对变工况的延迟。
缸内直喷的不足:
1. 增加压缩比,提高燃烧效率,前面已经提到,由于汽油直接喷油燃烧室内,汽油蒸发吸收大量热,发动机总体燃烧爆震的趋向降低,因此可以增加发动机压缩比以提 高效率。提高压缩比后,在低转速大负荷区,仍旧采用的是传统燃烧模式(均质燃烧),在这个区域本身就是一个易发生爆震的区域,而加大压缩比后更容易出现爆 震,有时甚至会出现超级爆震,也就是用传统的方法无法消除。
2.测试证明,起动过程和起动后阶段所排放的有害物质能够达到排放物总量的90%(法规循环工况)。采用“分层燃烧起动”和“两次喷射加热”相结合的方法去改善。
3.在低负荷、过渡工况和冷起动的情况下,缸内直喷发动机的微粒排放比进气道喷射发动机有明显增加。
4.中小负荷下未燃碳氢(UBHC)的排放较多,其主要原因有采用分层混合气时引起火焰从浓区向稀区的熄灭,稀空燃比工作条件造成缸内温度偏低,也不利于未燃碳氢随后的继续氧化。
5.因为空燃比不在理论空燃比附近,目前成熟的三元催化技术不能得到有效利用,因而NOx排放较高。另外,GDI发动机较高的压缩比和较快的反应放热率也会引起NOx升高。
6.气缸内的燃烧沉积物较多造成火花塞污染。
7. 发动机积碳,相比排气门背部,进气门背部的积碳相对要严重些。曲轴箱通风系统是一大诱因,机油蒸汽会被引入到进气歧管从而通过进气门进入气缸燃烧,附着在 进气道以及进气门背部的机油在高温的作用下形成了积碳,在缺少“自清洁”能力的条件下(喷嘴在缸内无法冲涮),积碳就会更为严重。反观排气门部位,受到高 温和排气气流作用,其形成积碳的压力本身就比进气门要小。
三、混合喷射方式:缸内直喷 进气道喷射
由于存在上面的不足,工程师们就想出了采用了缸内直喷加进气道喷射的主意,新结构如下图,其结构特点就是将进气道喷射和缸内直喷组合在一起,其主要目的还是解决排放问题。这样结合即带来好处也出现弊端。
混合喷射结构图
直 喷发动机跟进气道喷射发动机比PM(颗粒物)排放高。主要原因是直喷燃油喷在缸内,混合时间短,油膜直接附着在气缸内壁和活塞顶部,燃烧时不易充分燃烧, 形成PM。而进气道喷射燃油喷射在进气歧管内,油膜附着在歧管管壁,吸入汽缸的是充分混合的可燃气体,燃烧会比较充分。PM和NOx两者在数学模型上是一 对耦合参数,成反比关系,PM升高NOx就会降低。实际应用中,找PM-NOx曲线上最优点是所谓的Calibration/标定中的一项重要工作,最终 目的是要使这个点对应的PM和NOx都相对较低。学术领域常用全局优化,解耦之类复杂的数学方法找这个最优点,虽然仿真中都能达到比较满意的效果,但实际 实验中效果还是比较差的。直喷 进气道喷射并不是一个完美的技术,并没有克服直喷的固有缺点,相比直喷降低排放的同时也降低性能表现。也减少了直喷发动机 中小负荷稀燃的空间。
加上进气道喷嘴就是为了要在一些输出响应慢的工况下减少排放, 因为油气混合不好的结果并非只有PM。直喷喷嘴是为了满足快速混合的喷射策略要求(其实就是多次喷射)而优化设计的,发动机整体的性能表现主要来自于这个 优化过的直喷喷嘴。而进气道喷嘴只是起些辅助作用,比如改善冷启动性能,减少HC等,当然帮助减少PM。以上不对的地方请大家到汽车工程师之家提出宝贵的 意见。
1.在冷机时,中小负荷采用进气道喷射,以减少HC和颗粒物的生成。
2.热机时,小负荷区域采用进气道喷射,中小负荷采用进气道喷射加直喷模式。以降低NOx和颗粒物的生成。
回答于 2022-12-20
热心网友
时间:2023-09-23 15:26
什么是进气道喷射?缸内直喷之前发动机的燃油是先喷到进气管内,然后在进气管内与空气混合成为燃油混合气,最后再进入气缸内参与燃烧。
什么是缸内直喷?就是将喷油器由进气管道里移到了发动机缸内,直接在缸内与空气混合再参与燃烧,说白了就是空气与燃油分两路进入发动机气缸。直喷技术最大的好处就是能让压缩比提高,从而提升发动机的燃烧热效率。
什么是混合喷射技术?采用缸内直喷技术后,燃油经济性和动力性得到提升,但排放处理难度更大,起动和低温下的碳氢化合物,颗粒,中小负荷下的氮氧化物的处理增加了技术难度和成本。为了解决排放问题,就将进气管喷射和缸内直喷结合起来组成了混合喷射。其结构如下。
混合喷射系统的结构示意图
二、缸内直喷详解
要 理解为什么采用混合喷油模式,就得了解进气口喷射模式和缸内喷射模式的优缺点开始。在国家排放和油耗法规的要求下,传统的进气道喷射存在燃烧效率低,经济 性差等特点,Cartech8就不详细介绍进气道喷射发动机了,大家对这应该比较熟悉。我们重点介绍缸内直喷的工作控制过程,从中找出缸内直喷的优点,以 及缺点。然后分析两者为什么要结合到一起。下图是缸内直喷的结构及工作原理图。
缸 内直喷就是将燃油喷嘴安装于气缸内,直接将燃油喷入气缸内与进气混合。喷射压力也进一步提高,使燃油雾化更加细致,同时喷嘴位置、喷油时刻、喷雾形状、进 气气流控制,以及活塞顶形状等特别的设计,真正实现了精准地按比例控制喷油并与进气混合,使得燃烧效率更高。另外,喷入缸内的燃油吸收缸内热量,降低发动 机发生爆燃敲缸的倾向,可以进一步增加发动机压缩比。通常缸内直喷发动机配备涡轮增压,这些措施解决了进气道喷射发动机系统的主要缺点,即发动机在部分负 荷运行中的泵气损失大(发动机大部分在城市道路中工作于部分负荷工况),燃油经济性差。通常缸内直喷发动机工作于三种工作模式:分层充气模式、均质充气模 式、均质稀薄充气模式。三者的工作区域如下图。
缸内直喷三种模式的工作区域
分层充气模式:
中 小负载、中小转速区域内,发动机一直运行在分层充气模式中。空气由进气管进入汽缸撞在活塞顶部,由于活塞顶部制作成特殊的形状从而在火花塞附近形成期望中 的涡流。当压缩过程接近尾声时,少量的燃油由喷射器喷出,形成可燃气体。这种分层注油方式可充分提高发动机的经济性,因为在转速较低、负荷较小时除了火花 塞周围需要形成浓度较高的油气混合物外,燃烧室的其它地方只需空气含量较高的混合气即可。现在一些发动机为了改善燃烧,降低NOx的生成采用的两次甚至多 次喷射,见下图:
在 分层充气模式中为了尽可能地降低节气门损耗,节气门将尽可能地开大。节气门不能完全开启,因为碳罐和废气再循环系统需要一定的真空度。喷油过程发生在压缩 冲程的大约最后三分之一时。在此模式中,发动机产生的扭矩仅由被喷入的燃油量确定,进气空气质量和点火提前角产生的影响很小。通过燃烧室中的混合分层,发 动机过量空气系数(lambda)约1.6 至3 的范围内运行。
进入该模式条件:如果满足这些条件,发动机就能切换至分层充气模式。
- 发动机在相应的负载和转速区域中,
- 系统中没有与废气排放相关的故障
- 冷却液温度高于一定值。
- 氮氧化物传感器准备就绪, 氮氧化物存储式催化转换器的温度在 250 °C 至500 °C 之间。
均质充气模式
如 上图,发动机工作于高转速区域,或者低转速大负荷区域,其工作模式和原来的进气道模式基本上一样,主要差别是,汽油直接喷射发动机中的燃油是被直接喷入气 缸的。该模式,节气门的开度取决于油门踏板的位置(如何控制可参考Cartech8的另外一篇文章《动力性匹配之几张表搞定一辆车的动力性》)。发动机的 扭矩是由点火点(短期)和进气控制质量(长期)决定的。喷入的燃油量与进气量相匹配,从而使得空燃比Lambda=1左右。在均质充气模式中,点火点是影 响发动机的扭矩,燃油消耗和排放行为的主要因素。
喷油周期在进气冲程中,燃油在上止点前约300 度时被直接喷入气缸中。燃油蒸发需要的能量被从燃烧室内部的空气中吸收,从而使得空气得到冷却。结果,与带进气歧管喷射发动机的压缩率相比,压缩率得到更大的提高。
均质稀薄充气模式
这 种模式是在分层充气模式和均质充气模式之间的过渡区域。在这种模式中,短期的扭矩需求是通过点火角来实现的,长期需求则通过空气质量实现的。这些稀薄的混 合物被均质地(均匀地)分布在燃烧室中。空气/燃油混合比约为Lambda 1.55.左右。喷油周期,在进气冲程中,燃油在上止点前约300 度时被直接喷入气缸。由于喷油点提前,就给预点火混合物的形成留出了更多的时间,从而导致燃烧室中均质混合物的分布。
三种工作模式中节气门的开度
缸内直喷的优势:
1.节气门开度较进气道喷射发动机开度增加,泵气损失减少。发动机自身损失减少。
2.发动机稀薄燃烧提高燃油经济性。
3.压缩比增加,发动机热效率提高。与同排量的一般发动机相比功率与扭矩都提高了10%以上。
4.喷射压力也进一步提高,使燃油雾化更加细致,真正实现了精准地按比例控制喷油并与进气混合。
5. 进气口喷射发动机,20%喷嘴装在气缸盖上进气门的背面,80%安装在进气歧管上靠近气缸盖位置,在发动机起动时,会在进气门附近形成瞬时的液态油膜,这 些燃油会在每次进气过程逐渐蒸发进入气缸燃烧。冷机起动时由于燃油蒸发困难,使得实际供油量远大于需求空燃比的供油量,这样会导致冷起动时发动机有4 个~10个循环的不稳定燃烧,显著加大发动机未燃HC排放。而缸内直喷可以克服这个问题。
6.缸内直喷发动机加减速时不需要补偿油膜。之所以需要加减速修正,主要原因是进气道喷射存在燃油油膜,当负荷快速变化,油膜平衡改变,需要在短时间内通过喷射量来进行修正;次要原因是为了弥补传感器对变工况的延迟。
缸内直喷的不足:
1. 增加压缩比,提高燃烧效率,前面已经提到,由于汽油直接喷油燃烧室内,汽油蒸发吸收大量热,发动机总体燃烧爆震的趋向降低,因此可以增加发动机压缩比以提 高效率。提高压缩比后,在低转速大负荷区,仍旧采用的是传统燃烧模式(均质燃烧),在这个区域本身就是一个易发生爆震的区域,而加大压缩比后更容易出现爆 震,有时甚至会出现超级爆震,也就是用传统的方法无法消除。
2.测试证明,起动过程和起动后阶段所排放的有害物质能够达到排放物总量的90%(法规循环工况)。采用“分层燃烧起动”和“两次喷射加热”相结合的方法去改善。
3.在低负荷、过渡工况和冷起动的情况下,缸内直喷发动机的微粒排放比进气道喷射发动机有明显增加。
4.中小负荷下未燃碳氢(UBHC)的排放较多,其主要原因有采用分层混合气时引起火焰从浓区向稀区的熄灭,稀空燃比工作条件造成缸内温度偏低,也不利于未燃碳氢随后的继续氧化。
5.因为空燃比不在理论空燃比附近,目前成熟的三元催化技术不能得到有效利用,因而NOx排放较高。另外,GDI发动机较高的压缩比和较快的反应放热率也会引起NOx升高。
6.气缸内的燃烧沉积物较多造成火花塞污染。
7. 发动机积碳,相比排气门背部,进气门背部的积碳相对要严重些。曲轴箱通风系统是一大诱因,机油蒸汽会被引入到进气歧管从而通过进气门进入气缸燃烧,附着在 进气道以及进气门背部的机油在高温的作用下形成了积碳,在缺少“自清洁”能力的条件下(喷嘴在缸内无法冲涮),积碳就会更为严重。反观排气门部位,受到高 温和排气气流作用,其形成积碳的压力本身就比进气门要小。
三、混合喷射方式:缸内直喷 进气道喷射
由于存在上面的不足,工程师们就想出了采用了缸内直喷加进气道喷射的主意,新结构如下图,其结构特点就是将进气道喷射和缸内直喷组合在一起,其主要目的还是解决排放问题。这样结合即带来好处也出现弊端。
混合喷射结构图
直 喷发动机跟进气道喷射发动机比PM(颗粒物)排放高。主要原因是直喷燃油喷在缸内,混合时间短,油膜直接附着在气缸内壁和活塞顶部,燃烧时不易充分燃烧, 形成PM。而进气道喷射燃油喷射在进气歧管内,油膜附着在歧管管壁,吸入汽缸的是充分混合的可燃气体,燃烧会比较充分。PM和NOx两者在数学模型上是一 对耦合参数,成反比关系,PM升高NOx就会降低。实际应用中,找PM-NOx曲线上最优点是所谓的Calibration/标定中的一项重要工作,最终 目的是要使这个点对应的PM和NOx都相对较低。学术领域常用全局优化,解耦之类复杂的数学方法找这个最优点,虽然仿真中都能达到比较满意的效果,但实际 实验中效果还是比较差的。直喷 进气道喷射并不是一个完美的技术,并没有克服直喷的固有缺点,相比直喷降低排放的同时也降低性能表现。也减少了直喷发动机 中小负荷稀燃的空间。
加上进气道喷嘴就是为了要在一些输出响应慢的工况下减少排放, 因为油气混合不好的结果并非只有PM。直喷喷嘴是为了满足快速混合的喷射策略要求(其实就是多次喷射)而优化设计的,发动机整体的性能表现主要来自于这个 优化过的直喷喷嘴。而进气道喷嘴只是起些辅助作用,比如改善冷启动性能,减少HC等,当然帮助减少PM。以上不对的地方请大家到汽车工程师之家提出宝贵的 意见。
1.在冷机时,中小负荷采用进气道喷射,以减少HC和颗粒物的生成。
2.热机时,小负荷区域采用进气道喷射,中小负荷采用进气道喷射加直喷模式。以降低NOx和颗粒物的生成。
热心网友
时间:2023-09-23 15:26
混合气的3种模式的过程为:
(1) 进气过程 在均质混合气模式, 节气门的开度是按加速踏板位置传感器的信号来控制 的。 进气歧管翻板是根据发动机的负载和转速来控制的, 可打开、 关闭、 部分关闭进气歧管的下 进气道。
(2) 喷油过程 均质混合气模式的喷油时刻与均质稀混合气模式相同, 即在点火上止点前 300°时喷入燃油, 但此模式的过量空气系数为 λ = 1。
(3) 混合气形成过程 均质混合气模式的混合气形成时间也较长, 这可使混合气能充分混 合。
(4) 点燃做功过程 对于均质混合气模式, 点火时刻也有较大的范围, 可根据发动机的负 荷、 转速以及其他传感器信号来进行精确控制。
热心网友
时间:2023-09-23 15:27
均质混合气内燃机是指进入燃烧室的燃油,在进气行程与压缩行程中完成与空气的充分混合,并在点火的一刹那使缸内行程较为均匀的混合气,确保稳定点火。