数学上点是怎么发明的
发布网友
发布时间:2023-03-16 12:43
我来回答
共3个回答
热心网友
时间:2023-10-30 04:34
在数学中有些东西,似乎只是“人的作品”,用“发明”要恰当些。比如:在证明某些结果的过程中,数学家发现必须引进某种巧妙的而同时并非唯一的构想,以得到某种特别的结果。然而在另一些情况下,用术语“发现”的确比“发明”更贴切得多。如复数。当它引入后,人们从它的结构中得到的东西比预先放进的东西多得多。人们可以认为,在这种情形下数学家和“上帝的杰作”邂逅。也就是说,复数与复数的性质都是客观的,既非任何人的发明,也不是任何一群数学家的有意设计。它不是人类思维的发明:它是一个发现!数学家们只是重新“发现”了它们!数学家实际上是发现现成的真理,这些真理的存在完全独立于数学家的活动之外。数学对象是一种独立的、不依赖于人类思维的客观存在。
我们可以引述两位伟大数学家的意见。
阿基米德认为,数学关系的客观存在与人类能否解释它们无关。
牛顿说:“我不知道世人对我怎样看法,我只觉得自己好像是在海滨游戏的孩子,有时为找到一块光滑的石子或比较美丽的贝壳而高兴,而真理的海洋仍然在我的前面未被发现。可见,再伟大的数学家也仅不过是能够瞥见永恒真理一部分的幸运者。
当然,数学与客观实在的联系并不总是如此紧密有力。如四元数以及各种超复数的引入就是反对这种联系者提出的例证。四元数的引入有着物理背景,但对其他的超复数就连这种背景也失去了。它们似乎已是数学家的自由创造物。这类现象在数学中事实上是不少见的。数学概念的第一次抽象往往与外界世界有着紧密联系。但这些概念一旦引入数学中,就往往会进一步抽象化。当这种抽象化达到一定程度时,它与外界就似乎失去了关联。只驰骋于数学内部的逻辑,而不关心数学与外部的联系,却做出重要数学贡献的数学家不在少数。伴随着数学抽象程度越来越高,尤其是数学公理化思想的盛行,一段时间内否定数学与外界的联系的观点在数学家中变得相当普遍。
但诚如庞加莱在1897年苏黎世第一届国际数学家代表大会的报告中所指出的:“……如果允许我继续拿这些优美艺术作比,那么把外部世界置诸脑后的数学家,就好比是懂得如何把色彩与形态和谐地结合起来但却没有模特儿的画家,他们的创造力很快就会枯竭。”数学发展的历史证明了他是很有见地的。在他作出这个形象的比喻后80年,在丹麦召开了专门讨论数学同现实世界关系的国际性学术讨论会,更多的数学家相信数学同现实世界是密切相关的,数学反映了现实世界并在现实的应用中得到发展。
--
参考资料:网络资料
热心网友
时间:2023-10-30 04:34
你确定是发明的吗
点是抽象出来的,定义出来的
感觉属于公理之类的
热心网友
时间:2023-10-30 04:34
和线,面一样,都是定义出来的,并不是真实的存在