发布网友 发布时间:2023-03-14 20:29
共1个回答
热心网友 时间:2023-10-24 04:57
隐马尔可夫(HMM)好讲,简单易懂不好讲。我认为 @者也的回答没什么错误,不过我想说个更通俗易懂的例子。 还是用最经典的例子,掷骰子。假设我手里有三个不同的骰子。第一个骰子是我们平常见的骰子(称这个骰子为D6),6个面,每个面(1,2,3,4,5,6)出现的概率是1/6。第二个骰子是个四面体(称这个骰子为D4),每个面(1,2,3,4)出现的概率是1/4。第三个骰子有八个面(称这个骰子为D8),每个面(1,2,3,4,5,6,7,8)出现的概率是1/8。 假设我们开始掷骰子,我们先从三个骰子里挑一个,挑到每一个骰子的概率都是1/3。然后我们掷骰子,得到一个数字,1,2,3,4,5,6,7,8中的一个。 不停的重复上述过程,我们会得到一串数字,每个数字都是1,2,3,4,5,6,7,8中的一个。例如我们可能得到这么一串数字(掷骰子10次):1 6 3 5 2 7 3 5 2 4 这串数字叫做可见量链。但是在隐马尔可夫模型中,我们不仅仅有这么一串可见量链,还有一串隐含量链。在这个例子里,这串隐含变量链就是你用的骰子的序列。比如,隐含量链有可能是:D6 D8 D8 D6 D4 D8 D6 D6 D4 D8 一般来说,HMM中说到的马尔可夫链其实是指隐含量链,因为隐含量(骰子)之间存在转换概率的。在我们这个例子里,D6的下一个状态是D4,D6,D8的概率都是1/3。D4,D8的下一个状态是D4,D6,D8的转换概率也都一样是1/3。这样设定是为了最开始容易说清楚,但是我们其实是可以随意设定转换概率,或者转换概率分布的。比如,我们可以这样定义,D6后面不能接D4,D6后面是D6的概率是0.9,是D8的概率是0.1。这样就是一个新的HMM。 同样的,尽管可见量之间没有转换概率,但是隐含量和可见量之间有一个概率叫做emission probability(发射概率?没见过中文怎么说的。。。)。对于我们的例子来说,六面骰(D6)产生1的emission probability是1/6。产生2,3,4,5,6的概率也都是1/6。我们同样可以对emission probability进行其他定义。比如,我有一个被赌场动过手脚的六面骰子,掷出来是1的概率更大,是1/2,掷出来是2,3,4,5,6的概率是1/10。