问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

关于宇宙的资料

发布网友 发布时间:2022-04-20 09:09

我来回答

9个回答

懂视网 时间:2022-09-28 05:51

1、宇宙(Universe),泛指物质和时空。

2、现代宇宙学中的主流观点认为宇宙的起源,是起源于一次大爆炸,是在过去由一个密度极大且温度极高的状态演变而来的,并经过不断的膨胀达到的状态,这种观点被称为宇宙大爆炸理论或奇点大爆炸理论。

3、我们不知道什么原因引起了这次大爆炸。大爆炸发出的光线,还在向外传播。爆炸产生的气体和云团,舞动着,旋转着,聚集成胚胎时期的星系。

4、宇宙是广袤空间和其中存在的各种天体以及弥漫物质的总称。宇宙起源是一个极其复杂的问题。现代天文观测证明它处于不断的运动和发展中。千百年来,科学家们一直在探寻宇宙是什么时候、如何形成的。许多科学家认为,宇宙是由大约140亿年前发生的一次大爆炸形成的。

懂视网 时间:2022-09-28 05:51

1、宇宙(Universe),泛指物质和时空。

2、现代宇宙学中的主流观点认为宇宙的起源,是起源于一次大爆炸,是在过去由一个密度极大且温度极高的状态演变而来的,并经过不断的膨胀达到的状态,这种观点被称为宇宙大爆炸理论或奇点大爆炸理论。

3、我们不知道什么原因引起了这次大爆炸。大爆炸发出的光线,还在向外传播。爆炸产生的气体和云团,舞动着,旋转着,聚集成胚胎时期的星系。

4、宇宙是广袤空间和其中存在的各种天体以及弥漫物质的总称。宇宙起源是一个极其复杂的问题。现代天文观测证明它处于不断的运动和发展中。千百年来,科学家们一直在探寻宇宙是什么时候、如何形成的。许多科学家认为,宇宙是由大约140亿年前发生的一次大爆炸形成的。

懂视网 时间:2022-12-08 12:35

1、宇宙(Universe)在物理意义上被定义为所有的空间和时间(统称为时空)及其内涵,包括各种形式的所有能量,比如电磁辐射、普通物质、暗物质、暗能量等,其中普通物质包括行星、卫星、恒星、星系、星系团和星系间物质等。宇宙还包括影响物质和能量的物理定律,如守恒定律、经典力学、相对论等。

2、大爆炸理论是关于宇宙演化的现代宇宙学描述。根据这一理论的估计,空间和时间在137.99±0.21亿年前的大爆炸后一同出现,随着宇宙膨胀,最初存在的能量和物质变得不那么密集。最初的加速膨胀被称为暴胀时期,之后已知的四个基本力分离。宇宙逐渐冷却并继续膨胀,允许第一个亚原子粒子和简单的原子形成。暗物质逐渐聚集,在引力作用下形成泡沫一样的结构,大尺度纤维状结构和宇宙空洞。巨大的氢氦分子云逐渐被吸引到暗物质最密集的地方,形成了第一批星系、恒星、行星以及所有的一切。空间本身在不断膨胀,因此当前可以看见距离地球465亿光年的天体,因为这些光在138亿年前产生的时候距离地球比当前更近。

3、虽然整个宇宙的大小尚不清楚,但可以测量可观测宇宙的大小,估计其直径为930亿光年。在各种多重宇宙论中,一个宇宙是一个尺度更大的多重宇宙的组成部分之一,各个宇宙本身都包括其所有的空间和时间及其物质。

4、随着巡天观测技术水平的逐步提高,人类不断尝试绘制整个宇宙的全貌。2021年1月14日,国家天文台北京-亚利桑那巡天(BASS)团队和暗能量光谱巡天(DESI)团队联合发布最新巨幅二维宇宙地图。

懂视网 时间:2022-12-29 10:26

1、宇宙是广袤空间和其中存在的各种天体以及弥漫物质的总称。宇宙起源是一个极其复杂的问题。 宇宙是物质世界,它处于不断的运动和发展中。千百年来,科学家们一直在探寻宇宙是什么时候、如何形成的。直到今天,许多科学家认为,宇宙是由大约137亿年前发生的一次大爆炸形成的。

2、宇宙内的所存物质和能量都聚集到了一起,并浓缩成很小的体积,温度极高,密度极大,瞬间产生巨大压力,之后发生了大爆炸,这次大爆炸的反应原理被物理学家们称为量子物理。大爆炸使物质四散出去,宇宙空间不断膨胀,温度也相应下降,后来相继出现在宇宙中的所有星系、恒星、行星乃至生命。

懂视网 时间:2022-12-29 11:31

1、宇宙是广袤空间和其中存在的各种天体以及弥漫物质的总称,宇宙起源是一个极其复杂的问题。现代天文观测证明它处于不断的运动和发展中。

2、千百年来,科学家们一直在探寻宇宙是什么时候、如何形成的。许多科学家认为,宇宙是由大约140亿年前发生的一次大爆炸形成的。

3、宇宙大爆炸是现代宇宙学中最有影响的一种学说。它的主要观点是认为宇宙曾有一段从热到冷的演化史。在这个时期里,宇宙体系在不断地膨胀,使物质密度从密到稀地演化,如同一次规模巨大的爆炸。

4、起初,无空间、时间,未知原因,空间开始暴涨式出现,振动使得物质诞生,这次大爆炸的反应原理被物理学家们称为量子物理。大爆炸使空间扩张,宇宙空间不断膨胀,温度也相应下降,后来相继出现宇宙中的所有星系、恒星、行星乃至生命。

5、宇宙的23%由完全不知道起源的暗物质组成,73%由暗能量构成。

懂视网 时间:2022-12-29 13:30

1、宇宙是广袤空间和其中存在的各种天体以及弥漫物质的总称,宇宙起源是一个极其复杂的问题。现代天文观测证明它处于不断的运动和发展中。

2、千百年来,科学家们一直在探寻宇宙是什么时候、如何形成的。许多科学家认为,宇宙是由大约140亿年前发生的一次大爆炸形成的。

3、宇宙大爆炸是现代宇宙学中最有影响的一种学说。它的主要观点是认为宇宙曾有一段从热到冷的演化史。在这个时期里,宇宙体系在不断地膨胀,使物质密度从密到稀地演化,如同一次规模巨大的爆炸。

4、起初,无空间、时间,未知原因,空间开始暴涨式出现,振动使得物质诞生,这次大爆炸的反应原理被物理学家们称为量子物理。大爆炸使空间扩张,宇宙空间不断膨胀,温度也相应下降,后来相继出现宇宙中的所有星系、恒星、行星乃至生命。

5、宇宙的23%由完全不知道起源的暗物质组成,73%由暗能量构成。

热心网友 时间:2023-02-05 08:29

我们现在观察到的宇宙,其边界大约有100多亿光年。它由众多的星系所组成。地球是太阳系的一颗有生命的普通行星,而太阳是银河系中一颗普通恒星。我们所观察到的恒星、行星、慧星、星系等是怎么产生的呢?

宇宙学说认为,我们所观察到的宇宙,在其孕育的初期,集中于一个体积极小、温度极高、密度极大的奇点。在141亿年前左右,奇点产生后发生大爆炸,从此开始了我们所在的宇宙的诞生史。

宇宙大爆炸后0.01秒,宇宙的温度大约为1000亿度。物质存在的主要形式是电子、光子、中微子。以后,物质迅速扩散,温度迅速降低。大爆炸后1秒钟,下降到100亿度。大爆炸后14秒,温度约30亿度。35秒后,为3亿度,化学元素开始形成。温度不断下降,原子不断形成。宇宙间弥漫着气体云。他们在引力的作用下,形成恒星系统,恒星系统又经过漫长的演化,成为今天的宇宙。

物质现象的总和。广义上指无限多样、永恒发展的物质世界,狭义上指一定时代观测所及的最大天体系统。后者往往称作可观测宇宙、我们的宇宙,现在相当于天文学中的“总星系”。

2003年2月份,美国国家航空航天局曾向全世界公布他们有关宇宙年龄的研究成果。根据其公布的资料显示,宇宙年龄应该为137亿岁。2003年11月份,国际天体物理学研究小组宣称,宇宙的确切年龄应该是145亿岁。地球的形成大约是距今45亿年。

词源考察 在中国古籍中最早使用宇宙这个词的是《庄子·齐物论》。“宇”的含义包括各个方向,如东西南北的一切地点。“宙”包括过去、现在、白天、黑夜,即一切不同的具体时间。战国末期的尸佼说:“四方上下曰宇,往古来今曰宙。”“宇”指空间,“宙”指时间,“宇宙”就是时间和空间的统一。后来“宇宙”一词便被用来指整个客观实在世界。与宇宙相当的概念有“天地”、“乾坤”、“六合”等,但这些概念仅指宇宙的空间方面。《管子》的“宙合”一词,“宙”指时间,“合”(即“六合”)指空间,与“宇宙”概念最接近。

在西方,宇宙这个词在英语中叫cosmos,在俄语中叫кocMoc ,在德语中叫kosmos ,在法语中叫cosmos。它们都源自希腊语的κoσμoζ,古希腊人认为宇宙的创生乃是从浑沌中产生出秩序来,κoσμoζ其原意就是秩序。但在英语中更经常用来表示“宇宙”的词是universe。此词与universitas有关。在中世纪,人们把沿着同一方向朝同一目标共同行动的一群人称为universitas。在最广泛的意义上,universitas 又指一切现成的东西所构成的统一整体,那就是universe,即宇宙。universe和cosmos常常表示相同的意义,所不同的是,前者强调的是物质现象的总和,而后者则强调整体宇宙的结构或构造。

宇宙观念的发展 宇宙结构观念的发展 远古时代,人们对宇宙结构的认识处于十分幼稚的状态,他们通常按照自己的生活环境对宇宙的构造作了幼稚的推测。在中国西周时期,生活在华夏大地上的人们提出的早期盖天说认为,天穹像一口锅,倒扣在平坦的大地上;后来又发展为后期盖天说,认为大地的形状也是拱形的。公元前7世纪 ,巴比伦人认为,天和地都是拱形的,大地被海洋所环绕,而其*则是高山。古埃及人把宇宙想象成以天为盒盖、大地为盒底的大盒子,大地的*则是尼罗河。古印度人想象圆盘形的大地负在几只大象上,而象则站在巨大的龟背上,公元前7世纪末,古希腊的泰勒斯认为,大地是浮在水面上的巨大圆盘,上面笼罩着拱形的天穹。

最早认识到大地是球形的是古希腊人。公元前6世纪,毕达哥拉斯从美学观念出发,认为一切立体图形中最美的是球形,主张天体和我们所居住的大地都是球形的。这一观念为后来许多古希腊学者所继承,但直到1519~1522年,葡萄牙的F.麦哲伦率领探险队完成了第一次环球航行后 ,地球是球形的观念才最终证实。

公元2世纪,C.托勒密提出了一个完整的地心说。这一学说认为地球在宇宙的*安然不动,月亮、太阳和诸行星以及最外层的恒星天都在以不同速度绕着地球旋转。为了说明行星视运动的不均匀性,他还认为行星在本轮上绕其中心转动,而本轮中心则沿均轮绕地球转动。地心说曾在欧洲流传了1000多年。1543年,N.哥白尼提出科学的日心说,认为太阳位于宇宙中心,而地球则是一颗沿圆轨道绕太阳公转的普通行星。1609年,J.开普勒揭示了地球和诸行星都在椭圆轨道上绕太阳公转,发展了哥白尼的日心说,同年,伽利略·伽利雷则率先用望远镜观测天空,用大量观测事实证实了日心说的正确性。1687年,I.牛顿提出了万有引力定律,深刻揭示了行星绕太阳运动的力学原因,使日心说有了牢固的力学基础。在这以后,人们逐渐建立起了科学的太阳系概念。

在哥白尼的宇宙图像中,恒星只是位于最外层恒星天上的光点。1584年,乔尔丹诺·布鲁诺大胆取消了这层恒星天,认为恒星都是遥远的太阳。18世纪上半叶,由于E.哈雷对恒星自行的发展和J.布拉得雷对恒星遥远距离的科学估计,布鲁诺的推测得到了越来越多人的赞同。18世纪中叶,T.赖特、I.康德和J.H.朗伯推测说,布满全天的恒星和银河构成了一个巨大的天体系统。弗里德里希·威廉·赫歇尔首创用取样统计的方法,用望远镜数出了天空中大量选定区域的星数以及亮星与暗星的比例,1785年首先获得了一幅扁而平、轮廓参差、太阳居中的银河系结构图,从而奠定了银河系概念的基础。在此后一个半世纪中,H.沙普利发现了太阳不在银河系中心、J.H.奥尔特发现了银河系的自转和旋臂,以及许多人对银河系直径、厚度的测定,科学的银河系概念才最终确立。

18世纪中叶,康德等人还提出,在整个宇宙中,存在着无数像我们的天体系统(指银河系)那样的天体系统。而当时看去呈云雾状的“星云”很可能正是这样的天体系统。此后经历了长达170年的曲折的探索历程,直到1924年,才由E.P.哈勃用造父视差法测仙女座大星云等的距离确认了河外星系的存在。

近半个世纪,人们通过对河外星系的研究,不仅已发现了星系团、超星系团等更高层次的天体系统,而且已使我们的视野扩展到远达200亿光年的宇宙深处。

宇宙演化观念的发展 在中国,早在西汉时期,《淮南子·俶真训》指出:“有始者,有未始有有始者,有未始有夫未始有有始者”,认为世界有它的开辟之时,有它的开辟以前的时期,也有它的开辟以前的以前的时期。《淮南子·天文训》中还具体勾画了世界从无形的物质状态到浑沌状态再到天地万物生成演变的过程。在古希腊,也存在着类似的见解。例如留基伯就提出,由于原子在空虚的空间中作旋涡运动,结果轻的物质逃逸到外部的虚空,而其余的物质则构成了球形的天体,从而形成了我们的世界。

太阳系概念确立以后,人们开始从科学的角度来探讨太阳系的起源。1644年,R.笛卡尔提出了太阳系起源的旋涡说;1745年,G.L.L.布丰提出了一个因大彗星与太阳掠碰导致形成行星系统的太阳系起源说;1755年和1796年,康德和拉普拉斯则各自提出了太阳系起源的星云说。现代探讨太阳系起源z的新星云说正是在康德-拉普拉斯星云说的基础上发展起来。

1911年,E.赫茨普龙建立了第一幅银河星团的颜色星等图;1913年,伯特兰•阿瑟•威廉•罗素则绘出了恒星的光谱-光度图,即赫罗图。罗素在获得此图后便提出了一个恒星从红巨星开始,先收缩进入主序,后沿主序下滑,最终成为红矮星的恒星演化学说。1924年 ,亚瑟·斯坦利·爱丁顿提出了恒星的质光关系;1937~1939年,C.F.魏茨泽克和贝特揭示了恒星的能源来自于氢聚变为氦的原子核反应。这两个发现导致了罗素理论被否定,并导致了科学的恒星演化理论的诞生。对于星系起源的研究,起步较迟,目前普遍认为,它是我们的宇宙开始形成的后期由原星系演化而来的。

1917年,A.阿尔伯特·爱因斯坦运用他刚创立的广义相对论建立了一个“静态、有限、无界”的宇宙模型,奠定了现代宇宙学的基础。1922年,G.D.弗里德曼发现,根据阿尔伯特·爱因斯坦的场方程,宇宙不一定是静态的,它可以是膨胀的,也可以是振荡的。前者对应于开放的宇宙,后者对应于闭合的宇宙。1927年,G.勒梅特也提出了一个膨胀宇宙模型.1929年 哈勃发现了星系红移与它的距离成正比,建立了著名的哈勃定律。这一发现是对膨胀宇宙模型的有力支持。20世纪中叶,G.伽莫夫等人提出了热大爆炸宇宙模型,他们还预言,根据这一模型,应能观测到宇宙空间目前残存着温度很低的背景辐射。1965年微波背景辐射的发现证实了伽莫夫等人的预言。从此,许多人把大爆炸宇宙模型看成标准宇宙模型。1980年,美国的古斯在热大爆炸宇宙模型的 基础上又进一步提出了暴涨宇宙模型。这一模型可以解释目前已知的大多数重要观测事实。

宇宙图景 当代天文学的研究成果表明,宇宙是有层次结构的、物质形态多样的、不断运动发展的天体系统。

层次结构 行星是最基本的天体系统。太阳系*有八大行星:水星 金星 地球 火星 木星 土星 天王星 海王星。除水星和金星外,其他行星都有卫星绕其运转,地球有一个卫星 月球,土星的卫星最多,已确认的有17颗。行星 小行星 彗星和流星体都围绕中心天体太阳运转,构成太阳系。太阳占太阳系总质量的99.86%,其直径约140万千米,最大的行星木星的直径约14万千米。太阳系的大小约120亿千米。有证据表明,太阳系外也存在其他行星系统。2500亿颗类似太阳的恒星和星际物质构成更巨大的天体系统——银河系。银河系中大部分恒星和星际物质集中在一个扁球状的空间内,从侧面看很像一个“铁饼”,正面看去�则呈旋涡状。银河系的直径约10万光年,太阳位于银河系的一个旋臂中,距银心约3万光年。银河系外还有许多类似的天体系统,称为河外星系,常简称星系。现已观测到大约有10亿个。星系也聚集成大大小小的集团,叫星系团。平均而言,每个星系团约有百余个星系,直径达上千万光年。现已发现上万个星系团。包括银河系在内约40个星系构成的一个小星系团叫本星系群。若干星系团集聚在一起构成更大、更高一层次的天体系统叫超星系团。超星系团往往具有扁长的外形,其长径可达数亿光年。通常超星系团内只含有几个星系团,只有少数超星系团拥有几十个星系团。本星系群和其附近的约50个星系团构成的超星系团叫做本超星系团。目前天文观测范围已经扩展到200亿光年的广阔空间,它称为总星系。

多样性 天体千差万别,宇宙物质千姿百态。太阳系天体中,水星、金星表面温度约达700K,遥远的冥王星向日面的温度最高时也只有50K;金星表面笼罩着浓密的二氧化碳大气和硫酸云雾,气压约50个大气压,水星、火星表面大气却极其稀薄,水星的大气压甚至小于2×10-9毫巴;类地行星(水星、金星、火星)都有一个固体表面,类木行星却是一个流体行星;土星的平均密度为0.70克/厘米3,比水的密度还小,木星、天王星、海王星的平均密 度略大于水的密度,而水星、金星、地球等的密度则达到水的密度的5倍以上;多数行星都是顺向自转,而金星是逆向自转;地球表面生机盎然,其他行星则是空寂荒凉的世界。

太阳在恒星世界中是颗普遍而又典型的恒星。已经发现,有些红巨星的直径为太阳直径的几千倍。中子星直径只有太阳的几万分之一;超巨星的光度高达太阳光度的数百万倍,白矮星光度却不到太阳的几十万分之一。红超巨星的物质密度小到只有水的密度的百万分之一,而白矮星、中子星的密度分别可高达水的密度的十万倍和百万亿倍。太阳的表面温度约为6000K,O型星表面温度达30000K,而红外星的表面温度只有约600K。太阳的普遍磁场强度平均为1×10-4特斯拉,有些磁白矮星的磁场通常为几千、几万高斯(1高斯=10-4特斯拉),而脉冲星的磁场强度可高达十万亿高斯。有些恒星光度基本不变,有些恒星光度在不断变化,称变星。有的变星光度变化是有周期的,周期从1小时到几百天不等。有些变星的光度变化是突发性的,其中变化最剧烈的是新星和超新星,在几天内,其光度可增加几万倍甚至上亿倍。

恒星在空间常常聚集成双星或三五成群的聚星,它们可能占恒星总数的1/3。也有由几十、几百乃至几十万个恒星聚在一起的星团。宇宙物质除了以密集形式形成恒星、行星等之外,还以弥漫的形式形成星际物质。星际物质包括星际气体和尘埃,平均每立方厘米只有一个原子,其中高度密集的地方形成形状各异的各种星云。宇宙中除发出可见光的恒星、星云等天体外,还存在紫外天体、红外天体、X射线源、γ射线源以及射电源。

星系按形态可分为椭圆星系、旋涡星系、棒旋星系、透镜星系和不规则星系等类型。60年代又发现许多正在经历着爆炸过程或正在抛射巨量物质的河外天体,统称为活动星系,其中包括各种射电星系、塞佛特星系、N型星系、马卡良星系、蝎虎座BL型天体,以及类星体等等。许多星系核有规模巨大的活动:速度达几千千米/秒的气流,总能量达1055焦耳的能量输出,规模巨大的物质和粒子抛射,强烈的光变等等。在宇宙中有种种极端物理状态:超高温、超高压、超高密、超真空、超强磁场、超高速运动、超高速自转、超大尺度时间和空间、超流、超导等。为我们认识客观物质世界提供了理想的实验环境。

运动和发展 宇宙天体处于永恒的运动和发展之中,天体的运动形式多种多样,例如自转、各自的空间运动(本动)、绕系统中心的公转以及参与整个天体系统的运动等。月球一方面自转一方面围绕地球运转,同时又跟随地球一起围绕太阳运转。太阳一方面自转,一方面又向着武仙座方向以20千米/秒的速度运动,同时又带着整个太阳系以250千米/秒的速度绕银河系中心运转,运转一周约需2.2亿年。银河系也在自转,同时也有相对于邻近的星系的运动。本超星系团也可能在膨胀和自转。总星系也在膨胀。

现代天文学已经揭示了天体的起源和演化的历程。当代关于太阳系起源学说认为,太阳系很可能是50亿年前银河系中的一团尘埃气体云(原始太阳星云)由于引力收缩而逐渐形成的(见太阳系起源)。恒星是由星云产生的,它的一生经历了引力收缩阶段、主序阶段、红巨星阶段、晚期阶段和临终阶段。星系的起源和宇宙起源密切相关,流行的看法是:在宇宙发生热大爆炸后40万年,温度降到4000K,宇宙从辐射为主时期转化为物质为主时期,这时或由于密度涨落形成的引力不稳定性,或由于宇宙湍流的作用而逐步形成原星系,然后再演化为星系团和星系。热大爆炸宇宙模型描绘了我们的宇宙的起源和演化史:我们的宇宙起源于200亿年前的一次大爆炸,当时温度极高、密度极大。随着宇宙的膨胀,它经历了从热到冷、从密到稀、从辐射为主时期到物质为主时期的演变过程,直至10~20亿年前,才进入大规模形成星系的阶段,此后逐渐形成了我们当今看到的宇宙。1980年提出的暴涨宇宙模型则是热大爆炸宇宙模型的补充。它认为在宇宙极早期,在我们的宇宙诞生后约10-36秒的时候,它曾经历了一个暴涨阶段。

哲学分析 宇宙概念 有些宇宙学家认为,我们的宇宙是唯一的宇宙;大爆炸不是在宇宙空间的哪一点爆炸,而是整个宇宙自身的爆炸。但是,新提出的暴涨模型表明,我们的宇宙仅是整个暴涨区域的非常小的一部分,暴涨后的区域尺度要大于1026厘米,而那时我们的宇宙只有10厘米。还有可能这个暴涨区域是一个更大的始于无规则混沌状态的物质体系的一部分。这种情况恰如科学史上人类的认识从太阳系宇宙扩展到星系宇宙,再扩展到大尺度宇宙那样,今天的科学又正在努力把人类的认识进一步向某种探索中的“暴涨宇宙”、“无规则的混沌宇宙”推移。我们的宇宙不是唯一的宇宙,而是某种更大的物质体系的一部分,大爆炸不是整个宇宙自身的爆炸,而是那个更大物质体系的一部分的爆炸。因此,有必要区分哲学和自然科学两个不同层次的宇宙概念。哲学宇宙概念所反映的是无限多样、永恒发展的物质世界;自然科学宇宙概念所涉及的则是人类在一定时代观测所及的最大天体系统。两种宇宙概念之间的关系是一般和个别的关系。随着自然科学宇宙概念的发展,人们将逐步深化和接近对无限宇宙的认识。弄清两种宇宙概念的区别和联系,对于坚持马克思主义的宇宙无限论,反对宇宙有限论、神创论、机械论、不可知论、哲学代替论和取消论,都有积极意义。

宇宙的创生 有些宇宙学家认为,暴涨模型最彻底的改革也许是观测宇宙中所有的物质和能量从无中产生的观点,这种观点之所以在以前不能为人们接受,是因为存在着许多守恒定律,特别是重子数守恒和能量守恒。但随着大统一理论的发展,重子数有可能是不守恒的,而宇宙中的引力能可粗略地说是负的,并精确地抵消非引力能,总能量为零。因此就不存在已知的守恒律阻止观测宇宙从无中演化出来的问题。这种“无中生有”的观点在哲学上包括两个方面:①本体论方面。如果认为“无”是绝对的虚无,则是错误的。这不仅违反了人类已知的科学实践,而且也违反了暴涨模型本身。按照该模型,我们所研究的观测宇宙仅仅是整个暴涨区域的很小的一部分,在观测宇宙之外并不是绝对的“无”。现在观测宇宙的物质是从假真空状态释放出来的能量转化而来的,这种真空能恰恰是一种特殊的物质和能量形式,并不是创生于绝对的“无”。如果进一步说这种真空能起源于“无”,因而整个观测宇宙归根到底起源于“无”,那么这个“无”也只能是一种未知的物质和能量形式。②认识论和方*方面。暴涨模型所涉及的宇宙概念是自然科学的宇宙概念。这个宇宙不论多么巨大,作为一个有限的物质体系 ,也有其产生、发展和灭亡的历史。暴涨模型把传统的大爆炸宇宙学与大统一理论结合起来,认为观测宇宙中的物质与能量形式不是永恒的,应研究它们的起源。它把“无”作为一种未知的物质和能量形式,把“无”和“有”作为一对逻辑范畴,探讨我们的宇宙如何从“无”——未知的物质和能量形式,转化为“有”——已知的物质和能量形式,这在认识论和方*上有一定意义。

时空起源 有些人认为,时间和空间不是永恒的,而是从没有时间和没有空间的状态产生的。根据现有的物理理论,在小于10-43秒和10-33厘米的范围内,就没有一个“钟”和一把“尺子”能加以测量,因此时间和空间概念失效了,是一个没有时间和空间的物理世界。这种观点提出已知的时空形式有其适用的界限是完全正确的。正像历史上的牛顿时空观发展到相对论时空观那样,今天随着科学实践的发展也必然要求建立新的时空观。由于在大爆炸后10-43秒以内,广义相对论失效,必须考虑引力的量子效应,因此有些人试图通过时空的量子化的途径来探讨已知的时空形式的起源。这些工作都是有益的,但我们决不能因为人类时空观念的发展或者在现有的科学技术水平上无法度量新的时空形式,而否定作为物质存在形式的时间、空间的客观存在。

人和宇宙 从本世纪60年代开始,由于人择原理的提出和讨论,出现了人类存在和宇宙产生的关系问题。人择原理认为 ,可能存在许多具有不同物理参数和初始条件的宇宙,但只有物理参数和初始条件取特定值的宇宙才能演化出人类,因此我们只能看到一种允许人类存在的宇宙。人择原理用人类的存在去约束过去可能有的初始条件和物理定律,减少它们的任意性,使一些宇宙学现象得到解释,这在科学方*上有一定的意义。但有人提出,宇宙的产生依赖于作为观测者的人类的存在。这种观点值得商榷。现在根据暴涨模型,那些被传统大爆炸模型作为初始条件的状态,有可能从极早期宇宙的演化中产生出来,而且宇宙的演化几乎变得与初始条件的一些细节无关。这样就使上述那种利用初始条件的困难来否定宇宙客观实在性的观点失去了基础。但有些人认为,由于暴涨引起的巨大距离尺度,使得从整体上去观测宇宙的结构成为不可能。这种担心有其理由,但如果暴涨模型正确的话,随着科学实践的发展,一定有可能突破人类认识上的困难。

热心网友 时间:2023-02-05 09:47

我们现在观察到的宇宙,其边界大约有100多亿光年。它由众多的星系所组成。地球是太阳系的一颗有生命的普通行星,而太阳是银河系中一颗普通恒星。我们所观察到的恒星、行星、慧星、星系等是怎么产生的呢?
宇宙学说认为,我们所观察到的宇宙,在其孕育的初期,集中于一个体积极小、温度极高、密度极大的奇点。在141亿年前左右,奇点产生后发生大爆炸,从此开始了我们所在的宇宙的诞生史。
宇宙大爆炸后0.01秒,宇宙的温度大约为1000亿度。物质存在的主要形式是电子、光子、中微子。以后,物质迅速扩散,温度迅速降低。大爆炸后1秒钟,下降到100亿度。大爆炸后14秒,温度约30亿度。35秒后,为3亿度,化学元素开始形成。温度不断下降,原子不断形成。宇宙间弥漫着气体云。他们在引力的作用下,形成恒星系统,恒星系统又经过漫长的演化,成为今天的宇宙。
物质现象的总和。广义上指无限多样、永恒发展的物质世界,狭义上指一定时代观测所及的最大天体系统。后者往往称作可观测宇宙、我们的宇宙,现在相当于天文学中的“总星系”。
2003年2月份,美国国家航空航天局曾向全世界公布他们有关宇宙年龄的研究成果。根据其公布的资料显示,宇宙年龄应该为137亿岁。2003年11月份,国际天体物理学研究小组宣称,宇宙的确切年龄应该是145亿岁。地球的形成大约是距今45亿年。
词源考察 在中国古籍中最早使用宇宙这个词的是《庄子·齐物论》。“宇”的含义包括各个方向,如东西南北的一切地点。“宙”包括过去、现在、白天、黑夜,即一切不同的具体时间。战国末期的尸佼说:“四方上下曰宇,往古来今曰宙。”“宇”指空间,“宙”指时间,“宇宙”就是时间和空间的统一。后来“宇宙”一词便被用来指整个客观实在世界。与宇宙相当的概念有“天地”、“乾坤”、“六合”等,但这些概念仅指宇宙的空间方面。《管子》的“宙合”一词,“宙”指时间,“合”(即“六合”)指空间,与“宇宙”概念最接近。
在西方,宇宙这个词在英语中叫cosmos,在俄语中叫кocMoc ,在德语中叫kosmos ,在法语中叫cosmos。它们都源自希腊语的κoσμoζ,古希腊人认为宇宙的创生乃是从浑沌中产生出秩序来,κoσμoζ其原意就是秩序。但在英语中更经常用来表示“宇宙”的词是universe。此词与universitas有关。在中世纪,人们把沿着同一方向朝同一目标共同行动的一群人称为universitas。在最广泛的意义上,universitas 又指一切现成的东西所构成的统一整体,那就是universe,即宇宙。universe和cosmos常常表示相同的意义,所不同的是,前者强调的是物质现象的总和,而后者则强调整体宇宙的结构或构造。
宇宙观念的发展 宇宙结构观念的发展 远古时代,人们对宇宙结构的认识处于十分幼稚的状态,他们通常按照自己的生活环境对宇宙的构造作了幼稚的推测。在中国西周时期,生活在华夏大地上的人们提出的早期盖天说认为,天穹像一口锅,倒扣在平坦的大地上;后来又发展为后期盖天说,认为大地的形状也是拱形的。公元前7世纪 ,巴比伦人认为,天和地都是拱形的,大地被海洋所环绕,而其*则是高山。古埃及人把宇宙想象成以天为盒盖、大地为盒底的大盒子,大地的*则是尼罗河。古印度人想象圆盘形的大地负在几只大象上,而象则站在巨大的龟背上,公元前7世纪末,古希腊的泰勒斯认为,大地是浮在水面上的巨大圆盘,上面笼罩着拱形的天穹。
最早认识到大地是球形的是古希腊人。公元前6世纪,毕达哥拉斯从美学观念出发,认为一切立体图形中最美的是球形,主张天体和我们所居住的大地都是球形的。这一观念为后来许多古希腊学者所继承,但直到1519~1522年,葡萄牙的F.麦哲伦率领探险队完成了第一次环球航行后 ,地球是球形的观念才最终证实。
公元2世纪,C.托勒密提出了一个完整的地心说。这一学说认为地球在宇宙的*安然不动,月亮、太阳和诸行星以及最外层的恒星天都在以不同速度绕着地球旋转。为了说明行星视运动的不均匀性,他还认为行星在本轮上绕其中心转动,而本轮中心则沿均轮绕地球转动。地心说曾在欧洲流传了1000多年。1543年,N.哥白尼提出科学的日心说,认为太阳位于宇宙中心,而地球则是一颗沿圆轨道绕太阳公转的普通行星。1609年,J.开普勒揭示了地球和诸行星都在椭圆轨道上绕太阳公转,发展了哥白尼的日心说,同年,伽利略·伽利雷则率先用望远镜观测天空,用大量观测事实证实了日心说的正确性。1687年,I.牛顿提出了万有引力定律,深刻揭示了行星绕太阳运动的力学原因,使日心说有了牢固的力学基础。在这以后,人们逐渐建立起了科学的太阳系概念。
在哥白尼的宇宙图像中,恒星只是位于最外层恒星天上的光点。1584年,乔尔丹诺·布鲁诺大胆取消了这层恒星天,认为恒星都是遥远的太阳。18世纪上半叶,由于E.哈雷对恒星自行的发展和J.布拉得雷对恒星遥远距离的科学估计,布鲁诺的推测得到了越来越多人的赞同。18世纪中叶,T.赖特、I.康德和J.H.朗伯推测说,布满全天的恒星和银河构成了一个巨大的天体系统。弗里德里希·威廉·赫歇尔首创用取样统计的方法,用望远镜数出了天空中大量选定区域的星数以及亮星与暗星的比例,1785年首先获得了一幅扁而平、轮廓参差、太阳居中的银河系结构图,从而奠定了银河系概念的基础。在此后一个半世纪中,H.沙普利发现了太阳不在银河系中心、J.H.奥尔特发现了银河系的自转和旋臂,以及许多人对银河系直径、厚度的测定,科学的银河系概念才最终确立。
18世纪中叶,康德等人还提出,在整个宇宙中,存在着无数像我们的天体系统(指银河系)那样的天体系统。而当时看去呈云雾状的“星云”很可能正是这样的天体系统。此后经历了长达170年的曲折的探索历程,直到1924年,才由E.P.哈勃用造父视差法测仙女座大星云等的距离确认了河外星系的存在。
近半个世纪,人们通过对河外星系的研究,不仅已发现了星系团、超星系团等更高层次的天体系统,而且已使我们的视野扩展到远达200亿光年的宇宙深处。
宇宙演化观念的发展 在中国,早在西汉时期,《淮南子·俶真训》指出:“有始者,有未始有有始者,有未始有夫未始有有始者”,认为世界有它的开辟之时,有它的开辟以前的时期,也有它的开辟以前的以前的时期。《淮南子·天文训》中还具体勾画了世界从无形的物质状态到浑沌状态再到天地万物生成演变的过程。在古希腊,也存在着类似的见解。例如留基伯就提出,由于原子在空虚的空间中作旋涡运动,结果轻的物质逃逸到外部的虚空,而其余的物质则构成了球形的天体,从而形成了我们的世界。
太阳系概念确立以后,人们开始从科学的角度来探讨太阳系的起源。1644年,R.笛卡尔提出了太阳系起源的旋涡说;1745年,G.L.L.布丰提出了一个因大彗星与太阳掠碰导致形成行星系统的太阳系起源说;1755年和1796年,康德和拉普拉斯则各自提出了太阳系起源的星云说。现代探讨太阳系起源z的新星云说正是在康德-拉普拉斯星云说的基础上发展起来。
1911年,E.赫茨普龙建立了第一幅银河星团的颜色星等图;1913年,伯特兰•阿瑟•威廉•罗素则绘出了恒星的光谱-光度图,即赫罗图。罗素在获得此图后便提出了一个恒星从红巨星开始,先收缩进入主序,后沿主序下滑,最终成为红矮星的恒星演化学说。1924年 ,亚瑟·斯坦利·爱丁顿提出了恒星的质光关系;1937~1939年,C.F.魏茨泽克和贝特揭示了恒星的能源来自于氢聚变为氦的原子核反应。这两个发现导致了罗素理论被否定,并导致了科学的恒星演化理论的诞生。对于星系起源的研究,起步较迟,目前普遍认为,它是我们的宇宙开始形成的后期由原星系演化而来的。
1917年,A.阿尔伯特·爱因斯坦运用他刚创立的广义相对论建立了一个“静态、有限、无界”的宇宙模型,奠定了现代宇宙学的基础。1922年,G.D.弗里德曼发现,根据阿尔伯特·爱因斯坦的场方程,宇宙不一定是静态的,它可以是膨胀的,也可以是振荡的。前者对应于开放的宇宙,后者对应于闭合的宇宙。1927年,G.勒梅特也提出了一个膨胀宇宙模型.1929年 哈勃发现了星系红移与它的距离成正比,建立了著名的哈勃定律。这一发现是对膨胀宇宙模型的有力支持。20世纪中叶,G.伽莫夫等人提出了热大爆炸宇宙模型,他们还预言,根据这一模型,应能观测到宇宙空间目前残存着温度很低的背景辐射。1965年微波背景辐射的发现证实了伽莫夫等人的预言。从此,许多人把大爆炸宇宙模型看成标准宇宙模型。1980年,美国的古斯在热大爆炸宇宙模型的 基础上又进一步提出了暴涨宇宙模型。这一模型可以解释目前已知的大多数重要观测事实。
宇宙图景 当代天文学的研究成果表明,宇宙是有层次结构的、物质形态多样的、不断运动发展的天体系统。
层次结构 行星是最基本的天体系统。太阳系*有八大行星:水星 金星 地球 火星 木星 土星 天王星 海王星。除水星和金星外,其他行星都有卫星绕其运转,地球有一个卫星 月球,土星的卫星最多,已确认的有17颗。行星 小行星 彗星和流星体都围绕中心天体太阳运转,构成太阳系。太阳占太阳系总质量的99.86%,其直径约140万千米,最大的行星木星的直径约14万千米。太阳系的大小约120亿千米。有证据表明,太阳系外也存在其他行星系统。2500亿颗类似太阳的恒星和星际物质构成更巨大的天体系统——银河系。银河系中大部分恒星和星际物质集中在一个扁球状的空间内,从侧面看很像

热心网友 时间:2023-02-05 11:22

付费内容限时免费查看回答太空:地球大气层以外的宇宙空间,大气层空间以外的整个空间。物理学家将大气分为5层:对流层(海平面至10千米)、平流层(10~40千米)、中间层(40~80千米)、热成层(电离层,80~370千米)和外大气层(电离层,370千米以上)。地球上空的大气约有3/4在对流层内,97%在平流层以下,平流层的外缘是航空器依靠空气支持而飞行的最高限度。某些高空火箭可进入中间层。人造卫星的最低轨道在热成层内,其空气密度为地球表面的1%。在1.6万千米高度空气继续存在,甚至在10万千米高度仍有空气粒子。从严格的科学观点来说,空气空间和外层空间没有明确的界限,而是逐渐融合的。

自宇宙大爆炸以后,随着宇宙的膨胀,温度不断降低,当前,太空已成为高寒的环境,平均温度为零下270.3℃。在太空中,各种天体也向外辐射电磁波,许多天体还向外辐射高能粒子,形成宇宙射线。如太阳有太阳电磁辐射,太阳宇宙线辐射和太阳风,太阳宇宙线辐射是太阳在发生耀斑爆发时向外发射的高能粒子,而太阳风则是由日冕吹出的高能等离子体流。许多天体都有磁场,磁场俘获上述高能带电粒子,形成辐射很强的辐射带,如在地球的上空,就有内外两个辐射带。由此可见,太空还是一个强辐射环境。太空还是一个高真空,微重力环境。重力仅为百分之一到十万分之一g (g-重力加速度) ,而人在地面上感受到的重力是1g。

热心网友 时间:2023-02-05 13:13

“宇宙到底是什么样子?”目前尚无定论。值得一提的是史蒂芬·霍金的观点比较让人容易接受:宇宙有限而无界,只不过比地球多了几维。比如,我们的地球就是有限而无界的。在地球上,无论从南极走到北极,还是从北极走到南极,你始终不可能找到地球的边界,但你不能由此认为地球是无限的。实际上,我们都知道地球是有限的。地球如此,宇宙亦是如此。

怎么理解宇宙比地球多了几维呢?举个例子:一个小球沿地面滚动并掉进了一个小洞中,在我们看来,小球是存在的,它还在洞里面,因为我们人类是“三维”的;而对于一个动物来说,它得出的结论就会是:小球已经不存在了!它消失了。为什么会得出这样的结论呢?因为它生活在“二维”世界里,对“三维”事件是无法清楚理解的。同样的道理,我们人类生活在“三维”世界里,对于比我们多几维的宇宙,也是很难理解清楚的。这也正是对于“宇宙是什么样子”这个问题无法解释清楚的原因。

1、均匀的宇宙

长期以来,人们相信地球是宇宙的中心。哥白尼把这个观点颠倒了过来,他认为太阳才是宇宙的中心。地球和其他行星都围绕着太阳转动,恒星则镶嵌在天球的最外层上。布鲁诺进一步认为,宇宙没有中心,恒星都是遥远的太阳。

无论是托勒密的地心说还是哥白尼的日心说,都认为宇宙是有限的。教会支持宇宙有限的论点。但是,布鲁诺居然敢说宇宙.是无限的,从而挑起了宇宙究竟有限还是无限的长期论战。这场论战并没有因为教会烧死布鲁诺而停止下来。主张宇宙有限的人说:“宇宙怎么可能是无限的呢?”这个问题确实不容易说清楚。主张宇宙无限的人则反问:“宇宙怎么可能是有限的呢?”这个问题同样也不好回答。

随着天文观测技术的发展,人们看到,确实像布鲁诺所说的那样,恒星是遥远的太阳。人们还进一步认识到,银河是由无数个太阳系组成的大星系,我们的太阳系处在银河系的边缘,围绕着银河系的中心旋转,转速大约每秒250千米,围绕银心转一圈约需2.5亿年。太阳系的直径充其量约1光年,而银河系的直径则高达10万光年。银河系由1000多亿颗恒星组成,太阳系在银河系中的地位,真像一粒砂子处在北京城中。后来又发现,我们的银河系还与其他银河系组成更大的星系团,星系团的直径约为107光年(1000万光年)。目前,望远镜观测距离已达100亿光年以上,在所见的范围内,有无数的星系团存在,这些星系团不再组成更大的团,而是均匀各向同性地分布着。这就是说,在10的7次方光年的尺度以下,物质是成团分布的。卫星绕着行星转动,行星、彗星则绕着恒星转动,形成一个个太阳系。这些太阳系分别由一个、两个、三个或更多个太阳以及它们的行星组成。有两个太阳的称为双星系,有三个以上太阳的称为聚星系。成千亿个太阳系聚集在一起,形成银河系,组成银河系的恒星(太阳系)都围绕着共同的重心——银心转动。无数的银河系组成星系团,团中的各银河系同样也围绕它们共同的重心转动。但是,星系团之间,不再有成团结构。各个星系团均匀地分布着,无规则地运动着。从我们地球上往四面八方看,情况都差不多。粗略地说,星系固有点像容器中的气体分子,均匀分布着,做着无规则运动。这就是说,在10的8次方光年(一亿光年)的尺度以上,宇宙中物质的分布不再是成团的,而是均匀分布的。由于光的传播需要时间,我们看到的距离我们一亿光年的星系,实际上是那个星系一亿年以前的样子。所以,我们用望远镜看到的,不仅是空间距离遥远的星系,而且是它们的过去。从望远镜看来,不管多远距离的星系团,都均匀各向同性地分布着。

因而我们可以认为,宇观尺度上(10的5次方光年以上)物质分布的均匀状态,不是现在才有的,而是早已如此。

于是,天体物理学家提出一条规律,即所谓宇宙学原理。这条原理说,在宇观尺度上,三维空间在任何时刻都是均匀各向同性的。现在看来,宇宙学原理是对的。所有的星系都差不多,都有相似的演化历程。因此我们用望远镜看到的遥远星系,既是它们过去的形象,也是我们星系过去的形象。望远镜不仅在看空间,而且在看时间,在看我们的历史。

2、有限而无边的宇宙

爱因斯坦发表广义相对论后,考虑到万有引力比电磁力弱得多,不可能在分子、原子、原子核等研究中产生重要的影响,因而他把注意力放在了天体物理上。他认为,宇宙才是广义相对论大有用武之地的领域。

爱因斯坦1915年发表广义相对论,1917年就提出一个建立在广义相对论基础上的宇宙模型。这是一个人们完全意想不到的模型。在这个模型中,宇宙的三维空间是有限无边的,而且不随时间变化。以往人们认为,有限就是有边,无限就是无边。爱因斯坦把有限和有边这两个概念区分开来。

一个长方形的桌面,有确定的长和宽,也有确定的面积,因而大小是有限的。同时它有明显的四条边,因此是有边的。如果有一个小甲虫在它上面爬,无论朝哪个方向爬,都会很快到达桌面的边缘。所以桌面是有限有边的二维空间。如果桌面向四面八方无限伸展,成为欧氏几何中的平面,那么,这个欧氏平面是无限无边的二维空间。

我们再看一个篮球的表面,如果篮球的半径为r,那么球面的面积是4πr的2次方,大小是有限的。但是,这个二维球面是无边的。假如有一个小甲虫在它上面爬,永远也不会走到尽头。所以,篮球面是一个有限无边的二维空间。
按照宇宙学原理,在宇观尺度上,三维空间是均匀各向同性的。爱因斯坦认为,这样的三维空间必定是常曲率空间,也就是说空间各点的弯曲程度应该相同,即应该有相同的曲率。由于有物质存在,四维时空应该是弯曲的。三维空间也应是弯的而不应是平的。爱因斯坦觉得,这样的宇宙很可能是三维超球面。三维超球面不是通常的球体,而是二维球面的推广。通常的球体是有限有边的,体积是4/3πr的3次方,它的边就是二维球面。三维超球面是有限无边的,生活在其中的三维生物(例如我们人类就是有长、宽、高的三维生物),无论朝哪个方向前进均碰不到边。假如它一直朝北走,最终会从南边走回来。

宇宙学原理还认为,三维空间的均匀各向同性是在任何时刻都保持的。爱因斯坦觉得其中最简单阶情况就是静态宇宙,也就是说,不随时间变化的宇宙。这样的宇宙只要在某一时刻均匀各向同性,就永远保持均匀各向同性。

爱因斯坦试图在三维空间均匀各向同性、且不随时间变化的假定下,救解广义相对论的场方程。场方程非常复杂,而且需要知道初始条件(宇宙最初的情况)和边界条件(宇宙边缘处的情况)才能求解。本来,解这样的方程是十分困难的事情,但是爱因斯坦非常聪明,他设想宇宙是有限无边的,没有边自然就不需要边界条件。他又设想宇宙是静态的,现在和过去都一样,初始条件也就不需要了。再加上对称性的*(要求三维空间均匀各向同性),场方程就变得好解多了。但还是得不出结果。反复思考后,爱因斯坦终于明白了求不出解的原因:广义相对论可以看作万有引力定律的推广,只包含“吸引效应”不包含“排斥效应”。而维持一个不随时间变化的宇宙,必须有排斥效应与吸引效应相平衡才行。这就是说,从广义相对论场方程不可能得出“静态”宇宙。要想得出静态宇宙,必须修改场方程。于是他在方程中增加了一个“排斥项”,叫做宇宙项。这样,爱因斯坦终于计算出了一个静态的、均匀各向同性的、有限无边的宇宙模型。一时间大家非常兴奋,科学终于告诉我们,宇宙是不随时间变化的、是有限无边的。看来,关于宇宙有限还是无限的争论似乎可以画上一个句号了。

3、膨胀或脉动的宇宙

几年之后,一个名不见经传的前苏联数学家弗利德曼,应用不加宇宙项的场方程,得到一个膨胀的、或脉动的宇宙模型。弗利德曼宇宙在三维空间上也是均匀、各向同性的,但是,它不是静态的。这个宇宙模型随时间变化,分三种情况。第一种情况,三维空间的曲率是负的;第二种情况,三维空间的曲率为零,也就是说,三维空间是平直的;第三种情况,三维空间的曲率是正的。前两种情况,宇宙不停地膨胀;第三种情况,宇宙先膨胀,达到一个极大值后开始收缩,然后再膨胀,再收缩……因此第三种宇宙是脉动的。弗利德曼的宇宙最初发表在一个不太著名的杂志上。后来,西欧一些数学家物理学家得到类似的宇宙模型。爱因斯坦得知这类膨胀或脉动的宇宙模型后,十分兴奋。他认为自己的模型不好,应该放弃,弗利德曼模型才是正确的宇宙模型。

同时,爱因斯坦宣称,自己在广义相对论的场方程上加宇宙项是错误的,场方程不应该含有宇宙项,而应该是原来的老样子。但是,宇宙项就像“天方夜谭”中从瓶子里放出的魔鬼,再也收不回去了。后人没有理睬爱因斯坦的意见,继续讨论宇宙项的意义。今天,广义相对论的场方程有两种,一种不含宇宙项,另一种含宇宙项,都在专家们的应用和研究中。

早在1910年前后,天文学家就发现大多数星系的光谱有红移现象,个别星系的光谱还有紫移现象。这些现象可以用多谱勒效应来解释。远离我们而去的光源发出的光,我们收到时会感到其频率降低,波长变长,并出现光谱线红移的现象,即光谱线向长波方向移动的现象。反之,向着我们迎面而来的光源,光谱线会向短波方向移动,出现紫移现象。这种现象与声音的多普勒效应相似。许多人都有过这样的感受:迎面而来的火车其鸣叫声特别尖锐刺耳,远离我们而去的火车其鸣叫声则明显迟钝。这就是声波的多普勒效应,迎面而来的声源发出的声波,我们感到其频率升高,远离我们而去的声源发出的声波,我们则感到其频率降低。

如果认为星系的红移、紫移是多普勒效应,那么大多数星系都在远离我们,只有个别星系向我们靠近。随之进行的研究发现,那些个别向我们靠近的紫移星系,都在我们自己的本星系团中(我们银河系所在的星系团称本星系团)。本星系团中的星系,多数红移,少数紫移;而其他星系团中的星系就全是红移了。
1929年,美国天文学家哈勃总结了当时的一些观测数据,提出一条经验规律,河外星系(即我们银河系之外的其他银河系)的红移大小正比于它们离开我们银河系中心的距离。由于多普勒效应的红移量与光源的速度成正比,所以,上述定律又表述为:河外星系的退行速度与它们离我们的距离成正比:

V=HD

式中V是河外星系的退行速度,D是它们到我们银河系中心的距离。这个定律称为哈勃定律,比例常数H称为哈勃常数。按照哈勃定律,所有的河外星系都在远离我们,而且,离我们越远的河外星系,逃离得越快。

哈勃定律反映的规律与宇宙膨胀理论正好相符。个别星系的紫移可以这样解释,本星系团内部各星系要围绕它们的共同重心转动,因此总会有少数星系在一定时间内向我们的银河系靠近。这种紫移现象与整体的宇宙膨胀无关。

哈勃定律大大支持了弗利德曼的宇宙模型。不过,如果查看一下当年哈勃得出定律时所用的数据图,人们会感到惊讶。在距离与红移量的关系图中,哈勃标出的点并不集中在一条直线附近,而是比较分散的。哈勃怎么敢于断定这些点应该描绘成一条直线呢?一个可能的答案是,哈勃抓住了规律的本质,抛开了细节。另一个可能是,哈勃已经知道当时的宇宙膨胀理论,所以大胆认为自己的观测与该理论一致。以后的观测数据越来越精,数据图中的点也越来越集中在直线附近,哈勃定律终于被大量实验观测所确认。

4、宇宙有限还是无限

现在,我们又回到前面的话题,宇宙到底有限还是无限?有边还是无边?对此,我们从广义相对论、大爆炸宇宙模型和天文观测的角度来探讨这一问题。

满足宇宙学原理(三维空间均匀各向同性)的宇宙,肯定是无边的。但是否有限,却要分三种情况来讨论。

如果三维空间的曲率是正的,那么宇宙将是有限无边的。不过,它不同于爱因斯坦的有限无边的静态宇宙,这个宇宙是动态的,将随时间变化,不断地脉动,不可能静止。这个宇宙从空间体积无限小的奇点开始爆炸、膨胀。此奇点的物质密度无限大、温度无限高、空间曲率无限大、四维时空曲率也无限大。在膨胀过程中宇宙的温度逐渐降低,物质密度、空间曲率和时空曲率都逐渐减小。体积膨胀到一个最大值后,将转为收缩。在收缩过程中,温度重新升高、物质密度、空间曲率和时空曲率逐渐增大,最后到达一个新奇点。许多人认为,这个宇宙在到达新奇点之后将重新开始膨胀。显然,这个宇宙的体积是有限的,这是一个脉动的、有限无边的宇宙。

如果三维空间的曲率为零,也就是说,三维空间是平直的(宇宙中有物质存在,四维时空是弯曲的),那么这个宇宙一开始就具有无限大的三维体积,这个初始的无限大三维体积是奇异的(即“无穷大”的奇点)。大爆炸就从这个“无穷大”奇点开始,爆炸不是发生在初始三维空间中的某一点,而是发生在初始三维空间的每一点。即大爆炸发生在整个“无穷大”奇点上。这个“无穷大”奇点。温度无限高、密度无限大、时空曲率也无限大(三维空间曲率为零)。爆炸发生后,整个“奇点”开始膨胀,成为正常的非奇异时空,温度、密度和时空曲率都逐渐降低。这个过程将永远地进行下去。这是一种不大容易理解的图像:一个无穷大的体积在不断地膨胀。显然,这种宇宙是无限的,它是一个无限无边的宇宙。

三维空间曲率为负的情况与三维空间曲率为零的情况比较相似。宇宙一开始就有无穷大的三维体积,这个初始体积也是奇异的,即三维“无穷大”奇点。它的温度、密度无限高,三维、四维曲率都无限大。大爆炸发生在整个“奇点”上,爆炸后,无限大的三维体积将永远膨胀下去,温度、密度和曲率都将逐渐降下来。这也是一个无限的宇宙,确切地说是无限无边的宇宙。

那么,我们的宇宙到底属于上述三种情况的哪一种呢?我们宇宙的空间曲率到底为正,为负,还是为零呢?这个问题要由观测来决定。

广义相对论的研究表明,宇宙中的物质存在一个临界密度ρc,大约是每立方米三个核子(质子或中子)。如果我们宇宙中物质的密度ρ大于ρc,则三维空间曲率为正,宇宙是有限无边的;如果ρ小于ρc,则三维空间曲率为负,宇宙也是无限无边的。因此,观测宇宙中物质的平均密度,可以判定我们的宇宙究竟属于哪一种,究竞有限还是无限。

此外,还有另一个判据,那就是减速因子。河外星系的红移,反映的膨胀是减速膨胀,也就是说,河外星系远离我们的速度在不断减小。从减速的快慢,也可以判定宇宙的类型。如果减速因子q大于1/2,三维空间曲率将是正的,宇宙膨胀到一定程度将收缩;如果q等于1/2,三维空间曲率为零,宇宙将永远膨胀下去;如果q小于1/2,三维空间曲率将是负的,宇宙也将永远膨胀下去。

表3列出了有关的情况:

表3

宇宙中物质密度 红移的减速因子 三维空间曲率 宇宙类型 膨胀特点

ρ>ρc q>1/2 正 有限无边 脉动

ρ=ρc q=1/2 零 无限无边 永远膨胀

ρ<ρc q<1/2 负 无限无边 永远膨胀

我们有了两个判据,可以决定我们的宇宙究竟属于哪一种了。观测结果表明,ρ<ρc,我们宇宙的空间曲率为负,是无限无边的宇宙,将永远膨胀下去!不幸的是,减速因子观测给出了相反的结果,q>1/2,这表明我们宇宙的空间曲率为正,宇宙是有限无边的,脉动的,膨胀到一定程度会收缩回来。哪一种结论正确呢?有些人倾向于认为减速因子的观测更可靠,推测宇宙中可能有某些暗物质被忽略了,如果找到这些暗物质,就会发现ρ实际上是大于ρc的。另一些人则持相反的看法。还有一些人认为,两种观测方式虽然结论相反,但得到的空间曲率都与零相差不大,可能宇宙的空间曲率就是零。然而,要统一大家的认识,还需要进一步的实验观测和理论推敲。今天,我们仍然肯定不了宇宙究竟有限还是无限,只能肯定宇宙无边,而且现在正在膨胀!此外,还知道膨胀大约开始于100亿-200亿年以前,这就是说,我们的宇宙大约起源于100亿-200亿年之前。

5、爱因斯坦宇宙模型

根据物理理论,在一定的假设前提下提出的关于宇宙的设想与推测,称为宇宙模型。

著名科学家爱因斯坦于1915年建立了广义相对论的物理理论。这一理论认为,宇宙中没有绝对空间和绝对时间,无论是空间和时间都不能与物质隔开来,空间和时间均受物质影响;引力是空间弯曲的效应,而空间弯曲是由物质存在决定的。爱因斯坦将他的理论应用于宇宙研究,1917年发表了《根据广义相对论的宇宙学考察》的论文,他将广义相对论的引力场方程用于整个宇宙,建立起一种宇宙模型。
当时科学家普遍认为宇宙是静止的,不随时间变化的。虽然在几年前,美国天文学家斯里弗已发现了河外星系的谱线红移(显然这是对静止宇宙的挑战),但由于当时正值第一次世界大战,这一消息并没有传到欧洲。因此,爱因斯坦也和大多数科学家一样,认为宇宙是静态的。爱因斯坦想从引力场方程着手,得出一个宇宙是静态的、均匀的、各向同性的答案。但他得到的解是不稳定的,表明全间和距离不是恒定不变的,而是随时变化的。为了得到一个空间是稳定的解,爱因斯坦人为地在引力场方程中引入一个叫做“宇宙常数”的项,让它起斥力的作用。爱因斯坦得出一个有限无边的静态宇宙模型,称为爱因斯坦宇宙模型。为了便于理解,可把它比喻为三维空间中的一个二维球面:球面的面积是有限的、但沿着球面没有边界,也无中心,球面保持静态状态。几年以后,爱因斯坦得知河外星系退行,宇宙是膨胀的消息后,非常后悔在自己的模型中加了一个宇宙常数项,称这是他一生中犯的最大错误。
最新发现:银河系奇异恒星的伴星现身

科学家利用NASA的远紫外谱仪探索卫星首次探测到船底座伊塔星(Eta Carinae)的伴星。船底座伊塔星是银河系中最重最奇异的星体,座落在离地球7500光年船底座,在南半球用肉眼就可以清楚的看到。科学家认为船底座伊塔星是一个正迅速走向衰亡的不稳定恒星。
长期以来,科学家们就推断它应该存在着一颗伴星,但是一直得不到直接的证据。间接的证据来自其亮度呈现的规则变化。科学家发现船底座伊塔星在可见光,X-射线,射电波和红外线波段的亮度都呈现规则的重覆模式,因此推测它可能是一个双星系统。最有力的证据是每过5年半,船底座伊塔星系统发出的X-射线就会消失约三个月时间。科学家认为船底座伊塔星温度太低,本身并不能发出X-射线,但是它以每秒300英里的速度向外喷发气体粒子,这些气体粒子和伴星发出的粒子相互碰撞后发出X-射线。科学家认为X-射线消失的原因是船底座伊塔星每隔5年半就挡住了这些X-射线。最近一次X-射线消失开始于2003年6月29日。

科学家推断船底座伊塔星和其伴星的距离是地球到太阳之间的距离的10倍,因为它们距离太近,离地球又太远,无法用望远镜直接将它们区分开。另外一种方法就是直接观测伴星所发出的光。但是船底座伊塔星的伴星比其本身要暗的多,以前科学家曾经试图用地面望远镜和哈勃望远镜观测,但都没有成功。

美国天主教大学的科学家罗辛纳. 而平(Rosina Iping)及其合作者利用远紫外谱仪卫星来观测这颗伴星,因为它比哈勃望远镜能观测到波长更短的紫外线。它们在6月10日,17日观测到了远紫外线,但是在6月27日,也就是在X-射线消失前的两天远紫外线消失了。观测到的远紫外线来自船底座伊塔星的伴星,因为船底座伊塔星温度太低,本身不会发出远紫外线。这意味着船底座伊塔星挡住了X-射线的同时也挡住了伴星。这是科学家首次观测到船底座伊塔星的伴星发出的光,从而证实了这颗伴星的存在。

有三个太阳的恒星
据新华社14日电 据14日出版的《自然》杂志报道,美国天文学家在距离地球149光年的地方发现了一个具有三颗恒星的奇特星系,在这个星系内的行星上,能看到天空中有三个太阳。
美国加州理工学院的天文学家在该杂志上报告说,他们发现天鹅星座中的HD188753星系中有3颗恒星。处于该星系中心的一颗恒星与太阳系中的太阳类似,它旁边的行星体积至少比木星大14%。该行星与中心恒星的距离大约为800万公里,是太阳和地球之间距离的二十分之一。而星系的另外两颗恒星处于外围,它们彼此相距不远,也围绕中心恒星公转。

银河系中的星系多为单星系或双星系,具有三颗以上恒星的星系被称为聚星系,不太多见。

恒星并不是平均分布在宇宙之中,多数的恒星会受彼此的引力影响,形成聚星系统,如双星、三恒星,甚至形成星团,及星系等由数以亿计的恒星组成的恒星集团。

天文学家发现宇宙中生命诞生是普遍的现象

近日美国宇航局寻找地球以外生命物质存在证据的科研小组研究发现,某些在实际生命化学反应中起到至关重要作用的有机化学物质,普遍存在于我们地球以外的浩瀚宇宙中。研究结果表明,在宇宙深处存在生命物质、或者有孕育生命物质的化学反应发生,这在浩瀚的宇宙中是一种普遍现象。
上述研究来自“美国宇航局艾姆斯研究中心(NASA Ames Research Center)”的一个外空生物科研小组。在该小组工作的科学家道格拉斯-希金斯介绍时称:“根据科研小组最新的研究结果显示,一类在生物生命化学中起至关重要作用的化合物,在广袤的宇宙空间中广泛而且大量地存在着。” 作为该外空生物学研究小组的主要成员之一,道格拉斯-希金斯以第一作者的身份将他们的最新研究成果撰文发表在10月10日出版的《天体物理学》杂志上。
希金斯在描述其研究结果时介绍:“利用美国宇航局斯皮策太空望远镜(Spitzer Space Telescope)最近的观测结果,天文学家在我们所居住的银河系内,到处都发现了一种复杂有机物‘多环芳烃’(PAHs)存在的证据。但是这项发现一开始只得到天文学家的重视,并没有引起对外空生物进行研究的天体生物学家们的兴趣。因为对于生物学而言,普通的多环芳烃物质存在并不能说明什么实质问题。但是,我们的研究小组在最近一项分析结果中却惊喜的发现,宇宙中看到的这些多环芳烃物质,其分子结构中含有‘氮’元素(N)的成分,这一意外发现使我们的研究发生了戏剧性改变。”
该研究小组的另一成员,来自美国宇航局艾姆斯研究中心的天体生物学家路易斯-埃兰曼德拉说:“包括DNA分子在内,对于大多数构成生命的化学物质而言,含氮的有机分子参与是必须的条件。举一个含氮有机物质在生命物质意义上最典型的例子,象我们所熟悉的叶绿素,其对于植物的光合作用起着关键作用,而叶绿素分子中富含这种含氮多环芳烃(PANHs)成分。”
据介绍,在科研小组的研究工作中,除了利用来自斯皮策望远镜得到的观测数据外,科研人员还使用了欧洲宇航局太空红外天文观测卫星的观测数据。在美国宇航局艾姆斯研究中心的实验室中,研究人员对这类特殊的多环芳烃,利用红外光谱化学鉴定技术对其分子结构和化学成分进行了全面分析,找到其中氮元素存在的证据。同时科学家利用计算机技术对这些宇宙中普遍存在的含氮多环芳烃,进行了红外射线光谱模拟分析。
路易斯-埃兰曼德拉同时还表示:“除去上述分析结论以外,更加富有戏剧性的发现是,在斯皮策太空望远镜的观测中还显示出,在宇宙中一些即将死亡的恒星天体周围,环绕其外的众多星际物质中,都大量蕴藏着这种特殊的含氮多环芳烃成分。这一发现从某种意义上似乎也告诉我们,在浩瀚的宇宙星空中,即使在死亡来临的时候,同时也孕育着新生命开始的火种。”

本年度最大科学突破:宇宙正膨胀 发现暗能量

通过分析星系团(图中左侧的点),斯隆数字天空观测计划天文学家确定,暗能量正在驱动着宇宙不断地膨胀。

据英国《卫报》报道,证实宇宙正在膨胀是本年度最重大的科学突破。

报道说,近73%的宇宙由神秘的暗能量组成,它是一种反重力。在19日出版的美国《科学》杂志上,暗能量的发现被评为本年度最重大的科学突破。通过望远镜,人类在宇宙中已经发现近2000亿个星系,每一个星系中又有约2000亿颗星球。但所有这些加起来仅占整个宇宙的4%。

现在,在新的太空探索基础上,以及通过对100万个星系进行仔细研究,天文学家们至少已经弄清了部分情况。约23%的宇宙物质是“暗物质”。没有人知道它们究竟是什么,因为它们无法被检测到,但它们的质量大大超过了可见宇宙的总和。而近73%的宇宙是最新发现的暗能量。这种奇特的力量似乎正在使宇宙加速膨胀。英国皇家天文学家马丁·里斯爵士将这一发现称为“最重要的发现”。

这一发现是绕轨道运行的威尔金森微波各向异性探测器(WMAP)和斯隆数字天文台(SDSS)的成果。它解决了关于宇宙的年龄、膨胀的速度及组成宇宙的成分等一系列问题的长期争论。天文学家现在相信宇宙的年龄是137亿年

热心网友 时间:2023-02-05 15:21

远古时代,人们对宇宙结构的认识处于十分幼稚的状态,他们通常按照自己的生活环境对宇宙的构造

璀璨的宇宙星空作出推测。在中国西周时期,生活在华夏大地上的人们提出的早期盖天说认为,天穹像一口锅,倒扣在平坦的大地上;后来又发展为后期盖天说,认为大地的形状也是拱形的。公元前7世纪,巴比伦人认为,天和地都是拱形的,大地被海洋所环绕,而其*则是高山。古埃及人把宇宙想象成以天为盒盖、大地为盒底的大盒子,大地的*则是尼罗河。古印度人想象圆盘形的大地负在几只大象上,而象则站在巨大的龟背上,公元前7世纪末,古希腊的泰勒斯认为,大地是浮在水面上的巨大圆盘,上面笼罩着拱形的天穹。 也有一些人认为,地球只是一只龟上的一片甲板,而龟则是站在一个托着一个又一个的龟塔...
  最早认识到大地是球形的是古希腊人。公元前6世纪,毕达哥拉斯从美学观念出发,认为一切立体图形中最美的是球形,主张天体和我们所居住的大地都是球形的。这一观念为后来许多古希腊学者所继承,但直到1519~1522年,葡萄牙的F.麦哲伦率领探险队完成了第一次环球航行后 ,地球是球形的观念才最终被证实。

热心网友 时间:2023-02-05 17:46

宇宙百科:
http://ke.baidu.com/view/2496.htm
你去看看吧,目前人类只能认识这么点,当然宇宙永远不止就这些哈。

热心网友 时间:2023-02-05 20:27

225555555665453字啊我也要要
宇宙不一定是大爆炸产生的!

热心网友 时间:2023-02-05 23:58

一个字非常好

热心网友 时间:2023-02-06 03:46

太阳是距离地球最近的恒星,是太阳系的中心天体。太阳系质量的99.87%都集中在太阳,它强大的引力控制着大小行星、彗星等天体的运动。它孕育了地球文明,并且始终影响着地球生物。它是唯一可以详细研究表面结构的恒星,是一个巨大的天体物理实验室。但太阳只是银河系内一千亿颗恒星中普通的一员,位于银河系的对称平面附近,距离银河系中心约33000光年,在银道面以北约26光年,它一方面绕着银心以每秒250公里的速度旋转,另一方面又相对于周围恒星以每秒19.7公里的速度朝着织女星附近方向运动。

日 核
太阳的中心核反应区。约占太阳半径的20%,集中了太阳质量的一半。高温高压使这里的氢原子核聚变为氦,根据爱因斯坦的质能转换关系E=mc2,每秒钟有质量为6亿吨的氢热核聚变为5.96亿吨的氦,释放出相当于400万吨氢的能量,根据目前对太阳内部氢含量的估计,太阳至少还有50亿年的正常寿命。

辐 射 区
日核外面一层称为辐射区,范围从0.25个太阳半径到0.86太阳半径边缘温度约为70万开。从日核反应区发出的能量开始是以高能伽玛射线的形式发出,辐射区通过对这些高能粒子的吸收、再发射实现能量传递,经过无数次这种再吸收再辐射的漫长过程(一个光子脱离太阳可能需要1000年的时间),高能伽马射线经过X射线、极紫外线、紫外线逐渐变为可见光和其他形式的辐射。若没有辐射区的中介作用,太阳将是一个仅发射高能射线的不可见天体。

对 流 层
在辐射区外侧,太阳气体呈对流的不稳定状态,厚度大约14万公里这里的温度、压力和密度变化梯度很大,物质径向对对流运动强烈而又非均匀性,可产生低频声波,将机械能通过光球传输到太阳的外层大气。

光 球
对流层上面的太阳大气称为光球,温度约5770开,即太阳的平均有效温度,光球内的温度随深度而增加,大气透明度有限,因此在观测中有临边昏暗现象。几乎全部可见光都是从这一层发射出的。光球上最显著的现象是太阳黑子,由于它比周围区域的温度相对较低约为4200开,使其看起来是“黑”的,实际上是具有强磁场的低温漩涡。光球面上存在着不随时间变化且均匀分布的米粒状气团,它们呈激烈的起伏运动,是从对流层上升到光球的热气团,称为米粒组织,直径约1000到2000公里,它们时而出现时而消失,寿命约十分钟,存在超米粒组织,尺度达三万公里左右,寿命约20小时。

色 球
光球厚度约2000公里,几乎是透明的,平常看不到,只有在日全食时或使用专门的虑光镜观测。色球温度从底层的4500开上升到顶部的数万开。色球上玫瑰红色的舌状气体如烈火升腾,称为日珥,大的日珥高于日面几十万公里。还有无数被称为针状体的高温等离子小日珥,针状体可高达9000多公里,宽约1000公里,平均寿命约五分钟。日珥在日面上的投影称为暗条。在色球与日冕之间有时会突然发生剧烈的爆发现象,称为耀斑。耀斑常发生在黑子群附近上空从射电波段到X射线的辐射通量会突然增强,同时大量高能粒子和等离子体喷发,对地球空间环境产生很大影响。

日 冕
太阳的最外层大气。由高温、低密度的等离子体组成。日冕温度达一二百万开。高温使气体获得克服太阳引力的动能,形成不断发射的较稳定粒子流太阳风,是造成彗星尾背向太阳的主要动力。
宇宙的资料

古代对宇宙的定义,有西汉的《淮南子》:“往古来今谓之宙,四方上下谓之宇”。通过宇宙微波背景辐射的观测发现我们的宇宙已经膨胀了138.2亿年,最新的研究认为宇宙的直径可达到920亿光年,甚至更大。人类所观察到的部分宇宙的物件大约是由4.9%的普通物质(构成恒星、行星、气体和尘埃的物质)或“重...

宇宙资料

它认为在宇宙极早期,在我们的宇宙诞生后约10-36秒的时候,它曾经历了一个暴涨阶段。 哲学分析 宇宙概念 有些宇宙学家认为,我们的宇宙是唯一的宇宙;大爆炸不是在宇宙空间的哪一点爆炸,而是整个宇宙自身的爆炸。但是,新提出的暴涨模型表明,我们的宇宙仅是整个暴涨区域的非常小的一部分,暴涨后的区域尺度要大于1026厘米...

关于宇宙的资料有什么?

1、宇宙在大爆炸后不到1秒的时间里膨胀了大约10-30倍,大约和橘子一般大小,然后开始以较稳定的膨胀速率,直到现在,大约150亿年,成为目前的样子。2、物质“疙瘩”逐步形成了星系、恒星以及生命。3、模型暴胀期的长短是个关键。若稍短,物质为充分散开,原生宇宙就有重新坍缩为起点;若稍长,原生宇宙...

关于宇宙的资料与故事

宇宙的资料与故事 一、宇宙的概念与起源 宇宙是包括所有物质和能量的无限广阔空间。它起源自大约138亿年前的大爆炸,形成了一种名为宇宙的宏观结构。宇宙的膨胀仍在持续进行中,新的星系和恒星在不断诞生。至今,科学家仍在努力探索宇宙的起源、结构和命运。二、宇宙的构成与特点 宇宙主要由星系、恒星、...

关于宇宙的知识资料

科学家根据现代物理学和天文学,建立了关于宇宙的现代科学理论;宇宙的资料人类所观察到的部分宇宙的物件大约是由49%的普通物质构成恒星行星气体和尘埃的物质或“重子”,268%的暗物质和683%的暗能量构成重子物质构成星系际的“蛛网”宇宙的模型宇宙大爆炸是描述。

关于宇宙的资料

1、宇宙是广袤空间和其中存在的各种天体以及弥漫物质的总称。宇宙起源是一个极其复杂的问题。现代天文观测证明它处于不断的运动和发展中。千百年来,科学家们一直在探寻宇宙是什么时候、如何形成的。许多科学家认为,宇宙是由大约138亿年前发生的一次大爆炸形成的。起初,无空间、时间,未知原因,空间开始...

宇宙基本知识

1. 关于宇宙的小知识 宇宙是广漠空间和其中存在的各种天体以及弥漫物质的总称。 宇宙是物质世界,它处于不断的运动和发展中。 《淮南子.原道训》注:“四方上下曰宇,古往今来曰宙,以喻天地。” 即宇宙是天地万物的总称。 千百年来,科学家们一直在探寻宇宙是什么时候、如何形成的。 直到今天,科学家们才确信,...

关于宇宙的知识资料关于宇宙的相关知识

1、宇宙(Universe)在物理意义上被定义为所有的空间和时间(统称为时空)及其内涵,包括各种形式的所有能量,比如电磁辐射、普通物质、暗物质、暗能量等,其中普通物质包括行星、卫星、恒星、星系、星系团和星系间物质等。宇宙还包括影响物质和能量的物理定律,如守恒定律、经典力学、相对论等。2、大爆炸...

宇宙由什么组成的?

宇宙由各种各样的星系组成,地球位于各种星系之一的太阳系。人类所观察到的部分宇宙的物件大约是由4.9%的普通物质(构成恒星、行星、气体和尘埃的物质)或“重子”,26.8%的暗物质和68.3%的暗能量构成。重子物质构成星系际的“蛛网”。地球(Earth)是太阳系八大行星之一,按离太阳由近及远的次序排为...

关于太空的资料

1、宇宙里有大约2000亿颗恒星,好几百亿颗行星。直径500公里以下的行星,有足够的引力把自己压缩成圆球型,直径小于这个它就会保持原有的形状。 而银河系有几十亿颗恒星。太阳系是在46亿年前形成的。地球自转的速度66000公里。2、春季的天空,最突出的是狮子座。他像一个反问号,挂在天空,仿佛所有...

宇宙的知识科普 宇宙小知识摘抄 宇宙小知识100字 关于太空的资料简介 宇宙知识资料大全 关于宇宙的知识大全 星星的资料简介20字 宇宙最简单解释 宇宙科普小知识50字
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
word里的表格怎么调整行高和列宽 怎样调整word表格的行高与列宽 一吨煤能发多少功率 微信不打开微信就收不到语音和视频提示怎么办? 微信来电不显示怎么办 ...公众号里添加文字连接?比如“点击报名”几个字,点进去就是一个报名... 顺丰快递笔记本电脑多少钱? 东莞市捷高电子材料有限公司公司简介 淘宝的购买记录保留多久? 为什么蜻蜓喜欢飞来飞去? 宇宙的含义是什么? 什么叫宇宙 宇宙的概念是什么 关于宇宙的介绍 什么是宇宙(宇宙包括什么)? 什么是宇宙? 杭州市民中心可拉征信吗 杭州人民银行征信中心怎么查询个人信用?地址在哪... 我们煮饭时,是淘米之后煮好还是不淘米直接煮的好? 怎么淘米才正确 淘米不好,把营养都流失了,为什么还要淘米 为什么在煮饭之前要淘米啊?到底是淘还是不淘更好 为什么叫淘米而不叫洗米呢 怎样淘米才最正确? 淘米是啥? 淘米的淘米方法 为什么要淘米 淘米做饭是家家都要做的事情,盘点淘米的正确方法... 日记大全 三篇 日记300字大全 宇宙的资料? 为什么会有宇宙? 宇宙是什么时候形成的?为什么会形成宇宙呢? 宇宙怎么形成的 宇宙是由什么构成的 宇宙的英语是什么 宇宙是怎么诞生的? 宇宙本质到底是什么 宇宙基本知识 宇宙的意义 宇宙是什么? 什么是宇宙 华为手机怎么连接飞防管家软件? 飞防管家密码如何找回? 谁知道飞防管家软件,密码忘了怎么找回啊? 深圳市华鹰飞防科技有限公司怎么样? 大疆T16好,还是极飞P30好? 大专无人机应用技术就业前景 西双版纳飞防智能无人机科技有限公司怎么样? 什么是植保无人机,主要应用在那些方面