求矩阵的逆要详细的解题过程!
发布网友
发布时间:2022-04-29 21:43
我来回答
共2个回答
热心网友
时间:2022-06-23 13:07
显然A是可逆的,
用初等行变化求矩阵的逆矩阵
即用行变换把矩阵(A,E)化成(E,B)的形式,那么B就等于A的逆
在这里
(A,E)=
1 0 0 0 1 0 0 0
1 2 0 0 0 1 0 0
2 1 3 0 0 0 1 0
1 2 1 4 0 0 0 1 第4行减去第2行,第2行减去第1行,第3行减去第1行×2
~
1 0 0 0 1 0 0 0
0 2 0 0 -1 1 0 0
0 1 3 0 -2 0 1 0
0 0 1 4 0 -1 0 1 第2行除以2
~
1 0 0 0 1 0 0 0
0 1 0 0 -1/2 1/2 0 0
0 1 3 0 -2 0 1 0
0 0 1 4 0 -1 0 1 第3行减去第2行
~
1 0 0 0 1 0 0 0
0 1 0 0 -1/2 1/2 0 0
0 0 3 0 -3/2 -1/2 1 0
0 0 1 4 0 - 1 0 1 第3行除以3,第4行减去第3行
~
1 0 0 0 1 0 0 0
0 1 0 0 -1/2 1/2 0 0
0 0 1 0 -1/2 -1/6 1/3 0
0 0 0 4 1/2 -5/6 -1/3 1 第4行除以4
~
1 0 0 0 1 0 0 0
0 1 0 0 -1/2 1/2 0 0
0 0 1 0 -1/2 -1/6 1/3 0
0 0 0 1 1/8 -5/24 -1/12 1/4
这样就已经通过初等行变换把(A,E)~(E,A^-1)
于是得到了原矩阵的逆矩阵就是
1 0 0 0
-1/2 1/2 0 0
-1/2 -1/6 1/3 0
1/8 -5/24 -1/12 1/4
热心网友
时间:2022-06-23 13:07
因为这是个下三角矩阵,它的行列式等于主对角线上的元素(1,2,3,4)的乘积,即 det(A) = 1*2*3*4=24。因为det(A)不是0,所以A可逆。
求A的逆,可以先写出[A|I] 的形式。这里I是4维单位矩阵。通过行变换,将A化简成I,并且将相同的行变换作用到I上,那么I就变成A的逆了。
[A | I]-----> 行变换 ------> [I | A逆]