发布网友 发布时间:2022-04-29 12:51
共3个回答
热心网友 时间:2022-06-28 05:08
常用的非概率抽样方法有以下四类:
1、方便抽样(Convenience sampling)
指根据调查者的方便选取的样本,以无目标、随意的方式进行。例如:街头拦截访问(看到谁就访问谁);个别入户项目谁开门就访问谁。
优点:适用于总体中每个个体都是“同质”的,最方便、最省钱;可以在探索性研究中使用,另外还可用于小组座谈会、预测问卷等方面的样本选取工作。
缺点:抽样偏差较大,不适用于要做总体推断的任何*项目,对描述性或因果性研究最好不要采用方便抽样。
2、判断抽样(Judgment sampling)
指由专家判断而有目的地抽取他认为“有代表性的样本”。例如:社会学家研究某国家的一般家庭情况时,常以专家判断方法挑选“中型城镇”进行。
也有家庭研究专家选取某类家庭进行研究,如选三口之家(子女正在上学的);在探索性研究中,如抽取深度访问的样本时,可以使用这种方法。
优点:适用于总体的构成单位极不相同而样本数很小,同时设计调查者对总体的有关特征具有相当的了解(明白研究的具体指向)的情况下,适合特殊类型的研究(如产品口味测试等);操作成本低,方便快捷,在商业性调研中较多用。
缺点:该类抽样结果受研究人员的倾向性影响大,一旦主观判断偏差,则根易引起抽样偏差;不能直接对研究总体进行推断。
3、配额抽样(Quota sampling)
指先将总体元素按某些控制的指标或特性分类,然后按方便抽样或判断抽样选取样本元素。
相当于包括两个阶段的加*的判断抽样。在第一阶段需要确定总体中的特性分布(控制特征),通常,样本中具备这些控制特征的元素的比例与总体中有这些特征的元素的比例是相同的,通过第一步的配额,保证了在这些特征上样本的组成与总体的组成是一致的。
在第二阶段,按照配额来控制样本的抽取工作,要求所选出的元素要适合所控制的特性。例如:定点街访中的配额抽样。
优点:适用于设计调查者对总体的有关特征具有一定的了解而样本数较多的情况下,实际上,配额抽样属于先“分层”(事先确定每层的样本量)再“判断”(在每层中以判断抽样的方法选取抽样个体);费用不高,易于实施,能满足总体比例的要求。
缺点:容易掩盖不可忽略的偏差。
4、滚雪球抽样(Snowball sampling)
指先随机选择一些被访者并对其实施访问,再请他们提供另外一些属于所研究目标总体的调查对象,根据所形成的线索选择此后的调查对象。
第一批被访者是采用概率抽样得来的,之后的被访者都属于非概率抽样,此类被访者彼此之间较为相似。例如:如在目前中国的小轿车车主等。
优点:可以根据某些样本特征对样本进行控制,适用寻找一些在总体中十分稀少的人物。
缺点:有选择偏差,不能保证代表性。
扩展资料
抽样是有一定规则的,抽样的基本要求是:
1、总体范围的确定
抽样首先要明确规定抽样的总体范围,一般来说,研究课题和研究目的决定了总体的范围。如,“上海市区初中学生身体素质的调查”这个课题的总体就是上海市区全体初一至初三的中学生,不包括郊县的初中生。如果总体范围不很清楚,在抽样前应对总体做出明确的规定。
否则,会对抽取样本和研究结果的推断造成麻烦。通常研究课题的确立就已基本框定了总体范围,研究者要考虑的是为什么要确定该总体的理由,以及研究的预期效果和可行性问题。
2、抽样的随机化
抽样要尽可能做到随机化(random)。随机化是指总体中的每个个体被选入样本的概率(probability)不为零。也就是说,总体中的每一个个体入选的机会均等。
随机是科学研究的基本原则。抽样的随机化是一种精确而科学的过程,是科学研究结果可靠性的保证,可以避免研究者自觉或不自觉的偏见。抽签、摇奖就是根据抽样的随机化原理设计的。严格的抽样必须是随机的,这样可避免研究者的主观倾向或人为因素造成的抽样偏差(sampling bias)
3、样本的代表性
样本的代表性指样本应具备总体的性质或特征,样本能在较大程度上代表总体。样本研究的关键在于抽样和推论,抽样是推论的先决条件,样本的代表性会影响研究结论的可靠性和研究结论的推断程度。代表性越高的样本,其研究结果的普遍性就越大。
反之,如果样本没有代表性往往会导致研究的失败。常为人引用的一个例子是:1936年美国的总统大选,当时美国的《文学文摘》杂志曾做了一次关于总统大选的*调查,调查结果预测兰登将在总统选举中获胜,罗斯福落选。但事实正好相反,选举结果是罗斯福当选总统。
虽然《文学文摘》杂志的*调查样本数很大,但调查者的样本是从电话号簿和汽车登记册中抽取的。1936年正是美国经济大萧条过后,有汽车有电话的人仅代表了美国选民中的某个特定阶层,对于选民总体来说不具备代表性。
这次*调查的失败主要在于抽样偏差,样本没有代表性,抽取的样本在质上与总体特征不相吻合。与此同时,盖洛普*调查所也作了总统大选的调查,只发了2000份问卷,结果预测成功,罗斯福当选总统。
4、合理的样本容量
样本容量又称样本大小,是指抽取样本的具体数量。样本数量的多少是研究无法回避的问题,是研究设计中重要的一环,也是比较困难的一件事。它既要符合研究目的、内容,满足教育统计的要求,又要考虑抽样的可能性,并使误差减少到最低限度。
一般来说,样本数越多,代表性越好,但是增大样本,势必增加研究的人力、物力、财力,增加研究的难度,造成不必要的浪费。如果样本数太小,则抽样误差较大,样本不能代表总体,不利于统计分析,影响研究效果。
样本数量究竟多少为宜,这是一个复杂的问题。我们很难说出一个确定的数字,样本数量要从多个方面综合起来考虑。
抽样是以概率论为理论基础。抽样的作用是为了合理地减少研究对象,既可以节约人力、物力、时间,又可使研究力量相对集中,使研究工作深入、细致,从而提高研究的准确性和可靠性。
一般来说,定性研究中抽取的样本很小,样本有时仅仅是一个案例或一个个体,研究目的是为了对所研究对象进行更深入的了解。而定量研究的样本数较大,样本可以是一群个体,并要考虑样本能否准确代表总体,能否对总体作出推断。
参考资料来源:百度百科-非概率抽样
热心网友 时间:2022-06-28 05:08
1、方便抽样(Convenience sampling)
样本限于总体中易于抽到的一部分。最常见的方便抽样是偶遇抽样,即研究者将在某一时间和环境中所遇到的每一总体单位均作为样本成员。“街头拦人法”就是一种偶遇抽样。
某些调查对被调查者来说是不愉快的、麻烦的,这时为方便起见就采用以自愿被调查者为调查样本的方法。方便抽样是非随机抽样中最简单的方法,省时省钱,但样本代表性因受偶然因素的影响太大而得不到保证。
2、判断抽样(Judgment sampling)
指由专家判断而有目的地抽取他认为“有代表性的样本”。例如:社会学家研究某国家的一般家庭情况时,常以专家判断方法挑选“中型城镇”进行。
3、配额抽样(Quota sampling)
指先将总体元素按某些控制的指标或特性分类,然后按方便抽样或判断抽样选取样本元素。
相当于包括两个阶段的加*的判断抽样。在第一阶段需要确定总体中的特性分布(控制特征),通常,样本中具备这些控制特征的元素的比例与总体中有这些特征的元素的比例是相同的,通过第一步的配额,保证了在这些特征上样本的组成与总体的组成是一致的。
在第二阶段,按照配额来控制样本的抽取工作,要求所选出的元素要适合所控制的特性。例如:定点街访中的配额抽样。
4、滚雪球抽样(Snowball sampling)
以若干个具有所需特征的人为最初的调查对象,然后依靠他们提供认识的合格的调查对象,再由这些人提供第三批调查对象,……依次类推,样本如同滚雪球般由小变大。
滚雪球抽样多用于总体单位的信息不足或观察性研究的情况。这种抽样中有些分子最后仍无法找到,有些分子被提供者漏而不提,两者都可能造成误差。
非概率抽样(Non-probability sampling)又称非随机抽样,指根据一定主观标准抽取样本,令总体中每个个体的被抽取不是依据其本身的机会,而是完全决定于调研者的意愿。
其特点为不具有从样本推断总体的功能,但能反映某类群体的特征,是一种快速、简易且节省的数据收集方法。当研究者对总体具有较好的了解时可以采用此方法。
或是总体过于庞大、复杂,采用概率方法有困难时,可以采用非概率抽样来避免概率抽样中容易抽到实际无法实施或“差”的样本,从而避免影响对总体的代表度。
扩展资料
简单易行、成本低、省时间,在统计上也比概率抽样简单。但由于无法排除抽样者的主观性,无法控制和客观地测量样本代表性,因此样本不具有推论总体的性质。
非概率抽样多用于探索性研究和预备性研究,以及总体边界不清难于实施概率抽样的研究。在实际应用中,非概率抽样往往与概率抽样结合使用。
参考资料来源:百度百科-非概率抽样
热心网友 时间:2022-06-28 05:09
非概率抽样:调查者根据自己的方便或主观判断抽取样本的方法。它不是严格按随机抽样原则来抽取样本,所以失去了大数定律的存在基础,也就无法确定抽样误差,无法正确地说明样本的统计值在多大程度上适合于总体。虽然根据样本调查的结果也可在一定程度上说明总体的性质,特征,但不能从数量上推断总体。非概率抽样主要有偶遇抽样,主观抽样,定额抽样,滚雪球抽样等类型。