发布网友 发布时间:2022-04-29 10:48
共1个回答
热心网友 时间:2022-06-26 10:59
one-way ANOVA方差分析项的post Hoc test分别有二选项: 1.假设方差齐时有一系列的分析方法可选。2.假设方差不齐时又有一系列的分析方法可选。再者,为保证统计准确,如果方差不齐,可以进行对数,倒数或函数的转换,选择适当的转换形式,直到齐性检验变为不显著。如果还不行就只能用非参数的单因素分析。如果非要进行方差分析则需要把means±SD范围外的数据剔除。实际操作中对方差齐性等适用条件的把握:1.单因素方差分析:根据BOX的研究结果,在单因素方差分析中,如果各组的例数相同(即均衡),或总体呈正态分布,则方差分析模型对方差略微不齐有一定的耐受力,只要最大与最小方差之比小于3,分析结果都是稳定的2.单元格内无重复数据的方差分析分析:以配伍设计的方差分析最为典型,此时不需要考虑正态性和方差齐性问题,原因在于正态性和方差齐性的考察是以单元格为基本单位的,此时每个格子中只有一个元素,当然没法分析了.除配伍设计的方差分析外,交叉设计,正交设计等也可以出现无重复数据的情况.但必须指出,这里只是因条件不足,无法考察适用条件,而不是说可以完全忽视这两个问题.如果根据专业知识认为可能在不同单元格内正态性,方差齐性有问题,则应当避免使用这种无重复数据的设计方案.3.有重复数据的多因素方差分析:由于正态性,方差齐性的考察以单元格为基本单位,此时单元格数目往往很多,平均每个单元格内的样本粒数实际上比较少。此时实际上很难检验出差别;另一方面,也可能只是因为极个别单元格方差不齐而单质检验不能通过。根据实际经验,实际在多因素方差分析中,极端值的影响远远大于方差齐性等问题的影响,因此实际分析中可以直接考察因变量的分布情况,如果数据分布不是明显偏态,不存在极端值,而一般而言方差齐性和正态齐性不会有太大问题,而且也可以基本保证单元格内无极端值.因此在多因素方差分析中,方差齐性往往只限于理论讨论,但对于较重要的研究,则建模后的残差分析是非常重要的。