圆柱底面积字母公式。
发布网友
发布时间:2022-04-20 07:37
我来回答
共2个回答
热心网友
时间:2023-02-09 04:40
圆柱的底面积为S=兀R^2(R为底面半径).
底面积是数学用语,一般用于求几何体的底部面积。
圆柱(circular
cylinder)是由以矩形的一条边所在直线为旋转轴,其余三边绕该旋转轴旋转一周而形成的几何体。它有2个大小相同、相互平行的圆形底面和1个曲面侧面。其侧面展开是矩形。
直圆柱也叫正圆柱、圆柱,就是底面和顶面是同样半径(r)的圆,并且两圆圆心的连线和顶面、底面的互相垂直,并且我们可以得知,圆柱侧面展开图是长方形。
高:h
直圆柱
底面半径:r
底面直径:d
侧面积:S
总表面积:T
体积:V
底面积:A;B
S=
T=
V=
d=2r
斜圆柱
所谓的圆柱就是顶面和底面是同样半径(r)的圆,两圆圆心的连线和顶面、底面不互相垂直,并且我们可以得知,圆柱侧面展开图是平行四边形。
S=
斜圆柱
T=
V=Ah=Bh=
圆柱的底面是两个完全相等的圆,圆锥只有一个底面是个圆。
两个底面之间的距离叫做圆柱的高。圆柱有无数条高,且高的长度都相等。圆锥的顶点到底面圆心的距离叫做圆锥的高,圆锥只有一条高。
圆柱和圆锥的侧面是曲面。但圆柱的侧面展开图是正方形或长方形(沿高剪),而圆锥的侧面展开图是一个扇形。
扩展资料:
长方体或正方体底面的面积叫做底面积
长方体和正方体的底面积求法
长方体的底面积=长x宽
正方体的底面积=棱长x棱长
所以,长方体和正方体的体积也可以这样来计算:长方体(或正方体)的体积=底面积x高
如果用字母s表示底面积,上面的公式可以写成:v=sh
圆柱的底面积:
半径的平方乘π。
长方体和正方体的体积都等于底面积乘高。
如果用V表示圆柱的体积,S表示底面积,H表示高,那么
V=SH
正方形面积S=a的平方(a为边长),正方体的体积V=a的立方
圆柱的底面积为S=兀R^2(R为底面半径),体积为V=Sh(S为底面积)
圆锥的底面积公式同圆柱,体积为V=1/3*Sh(h为高)
棱柱的底面积为S=ab(长和宽).体积为V=Sh
凌锥的底面积同棱柱,体积为V=1/3*Sh
圆的面积为S=兀R^2,球的体积为V=4/3*兀R^3
热心网友
时间:2023-02-09 05:58
长方形的周长=(长+宽)×2
正方形的周长=边长×4
长方形的面积=长×宽
正方形的面积=边长×边长
三角形的面积=底×高÷2
平行四边形的面积=底×高
梯形的面积=(上底+下底)×高÷2
直径=半径×2
半径=直径÷2
圆的周长=圆周率×直径=
圆周率×半径×2
圆的面积=圆周率×半径×半径
长方体的表面积=
(长×宽+长×高+宽×高)×2
长方体的体积
=长×宽×高
正方体的表面积=棱长×棱长×6
正方体的体积=棱长×棱长×棱长
圆柱的侧面积=底面圆的周长×高
圆柱的表面积=上下底面面积+侧面积
圆柱的体积=底面积×高
圆锥的体积=底面积×高÷3
长方体(正方体、圆柱体)
的体积=底面积×高
平面图形
名称
符号
周长C和面积S
正方形
a—边长
C=4a
S=a2
长方形
a和b-边长
C=2(a+b)
S=ab
三角形
a,b,c-三边长
h-a边上的高
s-周长的一半
A,B,C-内角
其中s=(a+b+c)/2
S=ah/2
=ab/2·sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)
四边形
d,D-对角线长
α-对角线夹角
S=dD/2·sinα
平行四边形
a,b-边长
h-a边的高
α-两边夹角
S=ah
=absinα
菱形
a-边长
α-夹角
D-长对角线长
d-短对角线长
S=Dd/2
=a2sinα
梯形
a和b-上、下底长
h-高
m-中位线长
S=(a+b)h/2
=mh
圆
r-半径
d-直径
C=πd=2πr
S=πr2
=πd2/4
扇形
r—扇形半径
a—圆心角度数
C=2r+2πr×(a/360)
S=πr2×(a/360)
弓形
l-弧长
b-弦长
h-矢高
r-半径
α-圆心角的度数
S=r2/2·(πα/180-sinα)
=r2arccos[(r-h)/r]
-
(r-h)(2rh-h2)1/2
=παr2/360
-
b/2·[r2-(b/2)2]1/2
=r(l-b)/2
+
bh/2
≈2bh/3
圆环
R-外圆半径
r-内圆半径
D-外圆直径
d-内圆直径
S=π(R2-r2)
=π(D2-d2)/4
椭圆
D-长轴
d-短轴
S=πDd/4
立方图形
名称
符号
面积S和体积V
正方体
a-边长
S=6a2
V=a3
长方体
a-长
b-宽
c-高
S=2(ab+ac+bc)
V=abc
棱柱
S-底面积
h-高
V=Sh
棱锥
S-底面积
h-高
V=Sh/3
棱台
S1和S2-上、下底面积
h-高
V=h[S1+S2+(S1S1)1/2]/3
拟柱体
S1-上底面积
S2-下底面积
S0-中截面积
h-高
V=h(S1+S2+4S0)/6
圆柱
r-底半径
h-高
C—底面周长
S底—底面积
S侧—侧面积
S表—表面积
C=2πr
S底=πr2
S侧=Ch
S表=Ch+2S底
V=S底h
=πr2h
空心圆柱
R-外圆半径
r-内圆半径
h-高
V=πh(R2-r2)
直圆锥
r-底半径
h-高
V=πr2h/3
圆台
r-上底半径
R-下底半径
h-高
V=πh(R2+Rr+r2)/3
球
r-半径
d-直径
V=4/3πr3=πd2/6
球缺
h-球缺高
r-球半径
a-球缺底半径
V=πh(3a2+h2)/6
=πh2(3r-h)/3
a2=h(2r-h)
球台
r1和r2-球台上、下底半径
h-高
V=πh[3(r12+r22)+h2]/6
圆环体
R-环体半径
D-环体直径
r-环体截面半径
d-环体截面直径
V=2π2Rr2
=π2Dd2/4
桶状体
D-桶腹直径
d-桶底直径
h-桶高
V=πh(2D2+d2)/12
(母线是圆弧形,圆心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15
(母线是抛物线形)