求几个常用得泰勒公式得展开! 如ln(x+1),sinx,cosx等
发布网友
发布时间:2022-04-29 21:00
我来回答
共2个回答
热心网友
时间:2022-06-22 18:14
一个函数N阶可导,则这个函数就可以用泰勒公式N阶展开
即f(x)=f(x0)+f’(x0)(x-x0)+f’’(x0)(x-x0)/2!+...+f^(n)(x0)(x-x0)^(n)/n!+0X
f^(n)(x0)表示f(x)在x0处的N阶导数.0X表示比(x-x0)^(n)更高阶的无穷小
用拉格朗日型余项表示则0X=f^(n+1)(ζ)(x-ζ)^(n+1)/n+1!
而麦克劳林公式是泰勒公式在0点展开的特例
泰勒公式可以很容易的让你得到f(x)展开式中关于x的幂次项的系数,也可由已知的函数的导数值推出原函数.多用于求极限问题
比如求lim
(e^x-x-1)/x在x趋近于0时的极限
f(x)=e^x在x=0处二次展开=e^(0)+e^(0)*(x-0)+e^(0)(x-0)/2!+0x
=1+x+x/2;
那么lim
(e^x-x-1)/x=lim
(1+x+x/2-x-1)/x=1/2答案补充
用导数定义去理解
f’(x)=lim
[f(x)-f(x0)]/(x-x0)其中x->x0
那么就有当x->x0时lim
f(x)-f(x0)=f’(x)(x-x0)
lim
f(x)其于f(x)的误差拉格朗日型余项为f^(2)(ζ)(x-ζ)^(2)/2!是(x-x0)的高阶无穷小,一般用于证明题
热心网友
时间:2022-06-22 18:15
sinx=x-x^3/3!+x^5/5!+o(x^5),o(x^5)换成o(x^6)也可以。一般的写法是写成前面泰勒多项式最后一项的高阶无穷小,对sinx来说,一般写成o(x^5)就行了。逐项求导后就是cosx的泰勒公式