问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

数学七年级上册复习资料 第三单元(北师大的)

发布网友 发布时间:2022-04-29 18:19

我来回答

3个回答

热心网友 时间:2023-10-30 15:08

432222222222222222222222222222222222

热心网友 时间:2023-10-30 15:08

432222222222222222222222222222222222

热心网友 时间:2023-10-30 15:09

几个文案:
http://wenku.baidu.com/link?url=tlHfSkr4mAi_jwHtp3Ehl8t6VS6p4fqgD1vwBmiW4aa7CxctWxBfGbw2s0qSP9IrJawD_5FBFMj4FiHZboFK-6HWPKNe8CsiQ3qkXkC6I-C

http://wenku.baidu.com/link?url=CfNJ9V2d8zaJLMNZ32YjUmItYIsD0XCcuZMq9hTd1L7PLf9xFHimjIt2pja70sZebFL-DKoexKG0zyeR5CQj4Bu7LZY1OPojE0ABxx5f3kO

http://wenku.baidu.com/link?url=_sABSsdzwLXetpf50C7UzcxZlUUSVvq7x12xrComUFxqsqu0AMi1CKOzMNhlNWHqndrimsUzGrFR6FXljf51eozZYw3gnNIIMv-v5YsdiRu

热心网友 时间:2023-10-30 15:09

七年级上数学复习提纲
第一章 丰富的图形世界
1、 生活中常见的几何体:圆柱、 、正方体、长方体、 、球
2、 常见几何体的分类:球体、柱体(圆柱、棱柱、正方体、长方体)、锥体(圆锥、棱锥)
3、 平面图形折成立体图形应注意:侧面的个数与底面图形的边数相等。
4、 圆柱的侧面展开图是一个长方形;表面全部展开是两个 和一个 ;圆锥的表面全部展开图是一个 和一个 ;正方体表面展开图是一个 和两个小正方形,;长方形的展开图是一个大 和两个 。
5、 特殊立体图形的截面图形:
(1)长方体、正方形的截面是:三角形、四边形(长方形、正方形、梯形、平行四边形)、五边形、 。
(2)圆柱的截面是: 、圆
(3)圆锥的截面是:三角形、 。
(4)球的截面是:
6、我们经常把从 看到的图形叫做主视图,从 看到的图叫做左视图,从 看到的图叫做俯视图。
7、常见立体图形的俯视图
几何体 长方体 正方体 圆锥 圆柱 球
主视图 正方形 长方形
俯视图 长方形 圆 圆
左视图 长方形 正方形
8、点动成 ,线动成 ,面动成 。

第二章 有理数
1 、正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数。
与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上“+”)。
2 、有理数
(1) 正整数、0、负整数统称 ,正分数和负分数统称 。
整数和分数统称 。0既不是 数,也不是 数。
(2) 通常用一条直线上的点表示数,这条直线叫数轴。
数轴三要素:原点、 、单位长度。
在直线上任取一个点表示数0,这个点叫做 。
(3) 只有符号不同的两个数叫做互为相反数。
例:2的相反数是 ;-2的相反数是 ;0的相反数是
(4) 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
3 、有理数的加减法
(1)有理数加法法则:
①同号两数相加,取相同的 ,并把绝对值 相加。
②绝对值不相等的异号两数相加,取 符号,并用 减去较小的绝对值。
互为相反数的两个数相加和为0。
③一个数同0相加,仍得这个数。
(2) 有理数减法法则:减去一个数,等于加这个数的相反数。
4、 有理数的乘除法
(1) 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
(2) 乘积是1的两个数互为倒数。例:- 的倒数是 ;绝对值是 ;相反数是 。
(3) 有理数除法法则1:除以一个不等于0的数,等于乘这个数的倒数。
有理数除法法则2:两数相除,同号得 ,异号得 ,并把 相除。0除以任何一个不等于0的数,都得0。
(4) 求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是 。正数的任何次幂都是正数,0的任何次幂都是0。-1的奇次方是 ;-1的偶次方是 。

第三章、字母表示数
1、用运算符号把数和表示数的字母连接而成的字母叫做代数式。
2、求代数式值要注意:字母的取值必须确保代数式有意义;字母的取值要确保它本身所表示的数量有意义。
3、代数式的系数应包括这一项前的符号;如果代数式的某一项只含有字母因数,它的系数就是1或-1,而不是0。
4、同类项所含的 相同;相同字母的 也相同。
注意:同类项与系数无关,与字母的排列顺序无关;几个常数项也是同类项。
5、合并同类项法则:在合并同类项时,把同类项的系数相加, 不变。
6、去括号法则:
(1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里的
(2)括号前市“-”号,把括号和它前面的“-”号去掉后,原括号里

第四章 平面图形及位置关系
1、直线、射线、线段
(1) 直线、射线、线段的区别:直线 端点:射线 个端点:线段有 个端点。
(2) 线段公理:两点的所有连线中,线段 (两点之间,线段最短)。
连接两点间的线段的长度,叫做 。
(3)线段的比较方法:叠和法和度量法。
(4)线段的中点:如果M是AB的中点,那么 ;反之,如果点M在
线段AB上,并且有(AB=BM),那么点M是AB的中点。
例:C是线段AB的中点,可得AC= = ,或者2AC= =AB,
AC+ =AB , BC=AB- 。
2、角的度量与表示
(1) 1度= ; 1分= ; 1周角= 度 ;1平角= 度= 周角
(2)角的三种表示方法:用三个大写英文字母表示或用一个大写英文字母表示(如:<ABC,<A;用希腊字母表示(如<β);用数字表示(如<1,<2
3、 角的比较与运算
(1)角按大小分可分为锐角、直角、钝角、平角、周角。
(2)角平分线把一个角分成两个相等的角,角平分线是一条射线。
如果射线OC是<AOB的角平分线,则我们可知道<AOC= =
<AOB=2<BOC= ,<AOC+ =<AOB,<BOC=<AOB-
4、平行线
(1)如何画平行线?
(2)平行线的性质1:过直线外一点 与已知直线平行;
平行线的性质2:两条直线都与第三条直线平行,那么这两条直线也 。
5、垂直
(1) 如何画垂线?
(2) 垂线的性质1:过一点 一条直线与已知直线 。
垂线的性质2:直线外一点与直线上任意一点的连线中, 最短。
垂直的性质3:点到直线的距离。
6、 有趣的七巧板:
七巧板是由5个等腰直角三角形,一个 ,一个 组成的。

第五章 一元一次方程
1、 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数x,未知数x的指数都是 ,这样的方程叫做一元一次方程。
就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
2、等式的性质:
(1). 等式两边加(或减)同一个数(或式子),结果仍相等。
(2) 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
3、把等式一边的某项变号后移到另一边,叫做移项。(要移就得变)
4、在日历牌中,一个竖列上相邻两个数相差 , 的数比 的数大7;一个横行上相邻的两个数相差 , 的数比 的数大1。
5、常用体积公式:
长方形的体积=长X宽X ; 正方形的体积=边长X边长X边长 ;
棱柱的体积= x高; 圆柱的体积=底面积X ;
圆锥的体积= X高。
6、常用的相等关系:
(1)利润=售价- ;利润率=利润÷成本(进价)
(2) 利息=本金X利率X ; 本息和=本金+利息=本金X(1+利率X期数)
利息税=利息X税率=本金X利率X X ;
贷款利息=贷款金额X X 。
7、行程问题的主要类型及相等关系:
(1) 追及问题:甲乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。
(2) 问题:甲乙相向而行,则:甲走的路程+ =总路程。
8、解应用题的关键是 。

第六章生活中的数据
1、把一个大于10的数表示成 的形式(其中1≤a<10,n为正整数),就叫 。
(从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。)
2、扇形统计图的性质:各扇形分别代表每部分在 ;各扇形占整个圆的百分比之和为 。
3、 (1) 扇形圆心角的度数= X该部分占总体的 ;
(2) 每部分占总体的百分比=部分数量÷ =该部分所对应圆心角的度数与 的比。
4、制作扇形统计图的步骤是什么?
5、各统计图的特点:
(1)扇形统计图能清楚地表示出 ;
(2)折线统计图能清楚地反映 ;
(3)条形统计图能清楚地表现出 。

第七章 可能性
必然事件:事先能肯定它
确定事件{不可能事件:事先能肯定它一定
事件{不确定事件:事先无法肯定它
1、事情发生的可能性的大小:
机会大的不确定事件不一定发生,机会小的不确定事件也不一定不发生,机会大大小只能说明发生的程度不同。
2、要学会判断事情发生的可能性的大小。
------------------------------------------------------------------------------------------------------------------------数学复习提纲(一)

★扇形统计图:

1. 扇形统计图的意义:用整个圆表示总数,用圆内各个扇形的大小表示各部分占总数的百分数。

2. 扇形统计图的特点:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系。

3. 从统计图中获取信息:综合观察,联系实际解读出统计图反映的情况,并能做简单的分析、判断。

4. 结合统计图解决问题:根据统计图中提供的数据和题中已知条件,应用百分数的知识,解决题中的问题和实际生活中的问题。

★数学广角

1. 鸡兔同笼问题的特点:题中有两个或两个以上未知单量,要求根据两个或两个以上未知量的总数量,求出两个单量或两个以上的单量。

2. 鸡兔同笼问题的解题方法:(1)猜测法(2)假设法:先做出某种假设,根据设想进行推算,如果推出的结果与题意矛盾,再做适当调整,找出正确答案。(3)方程解法:设其中一个量为X,根据等量关系式列出方程。

★位置

1. 列、行的意义:竖排称为列, 横排称为行。

2. 数对的表示:(列、行)

★圆

一、圆的认识

1、 半径:连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。

直径:通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。

2、 圆规画圆的方法:

先把圆规的两脚分开,用直尺定好两脚之间的距离(定半径r)。

再把有针尖的一脚固定在一点上(定圆心O)。

再有铅笔的一脚旋转一周。

3、 圆的特点:

1)圆有无数条直径,也有无数条半径。

2) 同圆或等圆内,所有的直径都相等,所有的半径也都相等。

3) 同圆或等圆内,直径是半径的2倍,半径是直径的一半,即:d=2r r=d/2

4) 圆有无数条对称轴,每一条直径所在的直线,都是它的对称轴。

5) 圆的位置由圆心决定,大小由半径/直径决定。

6)两端都在圆上的线段中,直径最长。

二、圆的周长(化曲为直的推导过程)

1、圆周率(π):任意一个圆的周长和它的直径的比值都是一个固定的数,这个比就叫圆周率。

1)圆周率(π)

2)π是无限不循环小数

2、三组公式

d=2r

d=c/π

r=d/2

r=c/2π

c=πd

c=2πr

三、圆的面积(化圆为方的推导过程要了解,书上的例题要看看。)

S=π×r的平方

S环形=π×R的平方—π×r的平方

★百分数

一、百分数的意义

表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫做百分比和百分率。

二、百分数与分数、小数的互化

1.小数变百分数:将小数的小数点向右移动2位(分子×100)。同时在后面加上“%”(分母×100)。

百分数变小数:去“%”,同时小数点左移2位

2、分数变百分数:

方法一:先把分数转化成小数(即分子除以分母),再把小数转化成百分数。除不尽时,保留三位小数。

方法二:分母是100的因数(如5,10,20,25,50)时,直接把分数转化成分母是100的分数,再写成百分数。

百分数变分数:先写成分母是100的分数,再化简。

3. 百分数和分数的不同

分数既可以表示两个数之间的关系,也可以表示一个具体的数,而百分数只能表示两个数之间的关系。

四、常用的的求“率”的公式:

(课堂上已经做了笔记要求记熟,并会举一反三说出相应的数量关系式。如:合格率=合格的人数÷总人数×100% 合格的人数=总人数×合格率

总人数=合格的人数÷合格率)

数学复习提纲(二)

★百分数(补充添加)

1.求一个数比另一个数多或少百分之几的问题:

(1)甲比乙多百分之几的问题解题规律:

(甲—乙)÷乙=百分之几 或 甲÷乙—1=百分之几

(2)求乙比甲少百分之几的问题的解题规律:

(甲—乙)÷甲=百分之几 或 1—乙÷甲=百分之几

2. (1)求一个数的百分之几是多少的应用题的规律:

一个数(单位“1” )×百分率=部分量

(2)已知一个数的百分之几是多少,求这个数的应用题的解题规律:

部分量÷百分率=一个数(单位“1”)

这里的部分量与百分率要相对应。

3. 折扣:商品按原定价格的百分之几出售,叫折扣。

4. 纳税:

(1)应纳税额:就是缴纳的税款。

(2)税率:应纳税额与各种收入的比率叫税率。

(3)应纳税额=总收入×税率

5. 利率

三个概念:本金、利息、利率

利息=本金×利率×时间

★分数乘法

1、 分数乘整数的意义与计算法则:分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算;分数乘整数用分数的分子和整数相乘的积作分子,分母不变。

2、 一个数乘分数的意义与计算法则:一个数与分数相乘,可以看作是求这个数的 几分之几是多少。一个数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

3、 分数乘加、乘减混合运算的运算顺序和整数的运算顺序相同。

4、 整数乘法的运算定律(乘法交换律、结合律、分配律)对分数乘法同样适用。运用乘法的运算定律可以使一些计算简便。

5、 求一个数的几分之几是多少的问题的解题规律:

一个数(单位“1”)×几分之几=部分量(与几分之几相对应的量)。

6、 倒数的意义:乘积是1的 两个数互为倒数。

7、 求一个数(0除外)的倒数的方法:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

★分数除法

1、 分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

2、 分数除法的计算法则:

甲数除以乙数(0除外),等于甲数乘乙数的倒数。

(1) 分数除以整数(0除外)、等于分数乘这个整数的倒数。

(2) 一个数除以分数,等于这个数乘以分数的倒数。

3、 已知一个数的几分之几是多少,求这个数的问题的解题规律:

部分量÷几分之几=一个数(单位“1”)

(这里的部分量与几分之几要相对应。)

4、 比的意义:两个数相除又叫做两个数的比。

5、 比、分数、除法三者之间的关系:

(1)内在联系:a:b=a÷b=a/b(b≠0)

(2)区别:

①意义不同:比是表示两个数(或量)的一种关系,除法是一种运算,分数是一个数;

②读法不同;

③表示方法不同;

④结果表示不同。

6、 比的基本性质:比的前项和后项同时乘或者同时除以相同的数(0除外),比值不变。

7、 化简比的意义:把两个数的比化成最简单的整数比。应用比的基本性质可以把比化成最简单的整数比。

8、 按比例分配应用题的解题规律:

(1) 按比例分配解法,先求出份数,再求各部分量占总数的几分之几,最后用总数(单位i“1”)乘各部分量占总数的几分之几求出各部分量。

(2) 归一解法,先求出每份是多少,再用每份数乘各部分量所占的份数,求出各部分量。

参考资料:不知道符不符合,呵呵

热心网友 时间:2023-10-30 15:09

几个文案:
http://wenku.baidu.com/link?url=tlHfSkr4mAi_jwHtp3Ehl8t6VS6p4fqgD1vwBmiW4aa7CxctWxBfGbw2s0qSP9IrJawD_5FBFMj4FiHZboFK-6HWPKNe8CsiQ3qkXkC6I-C

http://wenku.baidu.com/link?url=CfNJ9V2d8zaJLMNZ32YjUmItYIsD0XCcuZMq9hTd1L7PLf9xFHimjIt2pja70sZebFL-DKoexKG0zyeR5CQj4Bu7LZY1OPojE0ABxx5f3kO

http://wenku.baidu.com/link?url=_sABSsdzwLXetpf50C7UzcxZlUUSVvq7x12xrComUFxqsqu0AMi1CKOzMNhlNWHqndrimsUzGrFR6FXljf51eozZYw3gnNIIMv-v5YsdiRu

热心网友 时间:2023-10-30 15:09

七年级上数学复习提纲
第一章 丰富的图形世界
1、 生活中常见的几何体:圆柱、 、正方体、长方体、 、球
2、 常见几何体的分类:球体、柱体(圆柱、棱柱、正方体、长方体)、锥体(圆锥、棱锥)
3、 平面图形折成立体图形应注意:侧面的个数与底面图形的边数相等。
4、 圆柱的侧面展开图是一个长方形;表面全部展开是两个 和一个 ;圆锥的表面全部展开图是一个 和一个 ;正方体表面展开图是一个 和两个小正方形,;长方形的展开图是一个大 和两个 。
5、 特殊立体图形的截面图形:
(1)长方体、正方形的截面是:三角形、四边形(长方形、正方形、梯形、平行四边形)、五边形、 。
(2)圆柱的截面是: 、圆
(3)圆锥的截面是:三角形、 。
(4)球的截面是:
6、我们经常把从 看到的图形叫做主视图,从 看到的图叫做左视图,从 看到的图叫做俯视图。
7、常见立体图形的俯视图
几何体 长方体 正方体 圆锥 圆柱 球
主视图 正方形 长方形
俯视图 长方形 圆 圆
左视图 长方形 正方形
8、点动成 ,线动成 ,面动成 。

第二章 有理数
1 、正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数。
与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上“+”)。
2 、有理数
(1) 正整数、0、负整数统称 ,正分数和负分数统称 。
整数和分数统称 。0既不是 数,也不是 数。
(2) 通常用一条直线上的点表示数,这条直线叫数轴。
数轴三要素:原点、 、单位长度。
在直线上任取一个点表示数0,这个点叫做 。
(3) 只有符号不同的两个数叫做互为相反数。
例:2的相反数是 ;-2的相反数是 ;0的相反数是
(4) 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
3 、有理数的加减法
(1)有理数加法法则:
①同号两数相加,取相同的 ,并把绝对值 相加。
②绝对值不相等的异号两数相加,取 符号,并用 减去较小的绝对值。
互为相反数的两个数相加和为0。
③一个数同0相加,仍得这个数。
(2) 有理数减法法则:减去一个数,等于加这个数的相反数。
4、 有理数的乘除法
(1) 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
(2) 乘积是1的两个数互为倒数。例:- 的倒数是 ;绝对值是 ;相反数是 。
(3) 有理数除法法则1:除以一个不等于0的数,等于乘这个数的倒数。
有理数除法法则2:两数相除,同号得 ,异号得 ,并把 相除。0除以任何一个不等于0的数,都得0。
(4) 求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是 。正数的任何次幂都是正数,0的任何次幂都是0。-1的奇次方是 ;-1的偶次方是 。

第三章、字母表示数
1、用运算符号把数和表示数的字母连接而成的字母叫做代数式。
2、求代数式值要注意:字母的取值必须确保代数式有意义;字母的取值要确保它本身所表示的数量有意义。
3、代数式的系数应包括这一项前的符号;如果代数式的某一项只含有字母因数,它的系数就是1或-1,而不是0。
4、同类项所含的 相同;相同字母的 也相同。
注意:同类项与系数无关,与字母的排列顺序无关;几个常数项也是同类项。
5、合并同类项法则:在合并同类项时,把同类项的系数相加, 不变。
6、去括号法则:
(1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里的
(2)括号前市“-”号,把括号和它前面的“-”号去掉后,原括号里

第四章 平面图形及位置关系
1、直线、射线、线段
(1) 直线、射线、线段的区别:直线 端点:射线 个端点:线段有 个端点。
(2) 线段公理:两点的所有连线中,线段 (两点之间,线段最短)。
连接两点间的线段的长度,叫做 。
(3)线段的比较方法:叠和法和度量法。
(4)线段的中点:如果M是AB的中点,那么 ;反之,如果点M在
线段AB上,并且有(AB=BM),那么点M是AB的中点。
例:C是线段AB的中点,可得AC= = ,或者2AC= =AB,
AC+ =AB , BC=AB- 。
2、角的度量与表示
(1) 1度= ; 1分= ; 1周角= 度 ;1平角= 度= 周角
(2)角的三种表示方法:用三个大写英文字母表示或用一个大写英文字母表示(如:<ABC,<A;用希腊字母表示(如<β);用数字表示(如<1,<2
3、 角的比较与运算
(1)角按大小分可分为锐角、直角、钝角、平角、周角。
(2)角平分线把一个角分成两个相等的角,角平分线是一条射线。
如果射线OC是<AOB的角平分线,则我们可知道<AOC= =
<AOB=2<BOC= ,<AOC+ =<AOB,<BOC=<AOB-
4、平行线
(1)如何画平行线?
(2)平行线的性质1:过直线外一点 与已知直线平行;
平行线的性质2:两条直线都与第三条直线平行,那么这两条直线也 。
5、垂直
(1) 如何画垂线?
(2) 垂线的性质1:过一点 一条直线与已知直线 。
垂线的性质2:直线外一点与直线上任意一点的连线中, 最短。
垂直的性质3:点到直线的距离。
6、 有趣的七巧板:
七巧板是由5个等腰直角三角形,一个 ,一个 组成的。

第五章 一元一次方程
1、 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数x,未知数x的指数都是 ,这样的方程叫做一元一次方程。
就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
2、等式的性质:
(1). 等式两边加(或减)同一个数(或式子),结果仍相等。
(2) 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
3、把等式一边的某项变号后移到另一边,叫做移项。(要移就得变)
4、在日历牌中,一个竖列上相邻两个数相差 , 的数比 的数大7;一个横行上相邻的两个数相差 , 的数比 的数大1。
5、常用体积公式:
长方形的体积=长X宽X ; 正方形的体积=边长X边长X边长 ;
棱柱的体积= x高; 圆柱的体积=底面积X ;
圆锥的体积= X高。
6、常用的相等关系:
(1)利润=售价- ;利润率=利润÷成本(进价)
(2) 利息=本金X利率X ; 本息和=本金+利息=本金X(1+利率X期数)
利息税=利息X税率=本金X利率X X ;
贷款利息=贷款金额X X 。
7、行程问题的主要类型及相等关系:
(1) 追及问题:甲乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。
(2) 问题:甲乙相向而行,则:甲走的路程+ =总路程。
8、解应用题的关键是 。

第六章生活中的数据
1、把一个大于10的数表示成 的形式(其中1≤a<10,n为正整数),就叫 。
(从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。)
2、扇形统计图的性质:各扇形分别代表每部分在 ;各扇形占整个圆的百分比之和为 。
3、 (1) 扇形圆心角的度数= X该部分占总体的 ;
(2) 每部分占总体的百分比=部分数量÷ =该部分所对应圆心角的度数与 的比。
4、制作扇形统计图的步骤是什么?
5、各统计图的特点:
(1)扇形统计图能清楚地表示出 ;
(2)折线统计图能清楚地反映 ;
(3)条形统计图能清楚地表现出 。

第七章 可能性
必然事件:事先能肯定它
确定事件{不可能事件:事先能肯定它一定
事件{不确定事件:事先无法肯定它
1、事情发生的可能性的大小:
机会大的不确定事件不一定发生,机会小的不确定事件也不一定不发生,机会大大小只能说明发生的程度不同。
2、要学会判断事情发生的可能性的大小。
------------------------------------------------------------------------------------------------------------------------数学复习提纲(一)

★扇形统计图:

1. 扇形统计图的意义:用整个圆表示总数,用圆内各个扇形的大小表示各部分占总数的百分数。

2. 扇形统计图的特点:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系。

3. 从统计图中获取信息:综合观察,联系实际解读出统计图反映的情况,并能做简单的分析、判断。

4. 结合统计图解决问题:根据统计图中提供的数据和题中已知条件,应用百分数的知识,解决题中的问题和实际生活中的问题。

★数学广角

1. 鸡兔同笼问题的特点:题中有两个或两个以上未知单量,要求根据两个或两个以上未知量的总数量,求出两个单量或两个以上的单量。

2. 鸡兔同笼问题的解题方法:(1)猜测法(2)假设法:先做出某种假设,根据设想进行推算,如果推出的结果与题意矛盾,再做适当调整,找出正确答案。(3)方程解法:设其中一个量为X,根据等量关系式列出方程。

★位置

1. 列、行的意义:竖排称为列, 横排称为行。

2. 数对的表示:(列、行)

★圆

一、圆的认识

1、 半径:连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。

直径:通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。

2、 圆规画圆的方法:

先把圆规的两脚分开,用直尺定好两脚之间的距离(定半径r)。

再把有针尖的一脚固定在一点上(定圆心O)。

再有铅笔的一脚旋转一周。

3、 圆的特点:

1)圆有无数条直径,也有无数条半径。

2) 同圆或等圆内,所有的直径都相等,所有的半径也都相等。

3) 同圆或等圆内,直径是半径的2倍,半径是直径的一半,即:d=2r r=d/2

4) 圆有无数条对称轴,每一条直径所在的直线,都是它的对称轴。

5) 圆的位置由圆心决定,大小由半径/直径决定。

6)两端都在圆上的线段中,直径最长。

二、圆的周长(化曲为直的推导过程)

1、圆周率(π):任意一个圆的周长和它的直径的比值都是一个固定的数,这个比就叫圆周率。

1)圆周率(π)

2)π是无限不循环小数

2、三组公式

d=2r

d=c/π

r=d/2

r=c/2π

c=πd

c=2πr

三、圆的面积(化圆为方的推导过程要了解,书上的例题要看看。)

S=π×r的平方

S环形=π×R的平方—π×r的平方

★百分数

一、百分数的意义

表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫做百分比和百分率。

二、百分数与分数、小数的互化

1.小数变百分数:将小数的小数点向右移动2位(分子×100)。同时在后面加上“%”(分母×100)。

百分数变小数:去“%”,同时小数点左移2位

2、分数变百分数:

方法一:先把分数转化成小数(即分子除以分母),再把小数转化成百分数。除不尽时,保留三位小数。

方法二:分母是100的因数(如5,10,20,25,50)时,直接把分数转化成分母是100的分数,再写成百分数。

百分数变分数:先写成分母是100的分数,再化简。

3. 百分数和分数的不同

分数既可以表示两个数之间的关系,也可以表示一个具体的数,而百分数只能表示两个数之间的关系。

四、常用的的求“率”的公式:

(课堂上已经做了笔记要求记熟,并会举一反三说出相应的数量关系式。如:合格率=合格的人数÷总人数×100% 合格的人数=总人数×合格率

总人数=合格的人数÷合格率)

数学复习提纲(二)

★百分数(补充添加)

1.求一个数比另一个数多或少百分之几的问题:

(1)甲比乙多百分之几的问题解题规律:

(甲—乙)÷乙=百分之几 或 甲÷乙—1=百分之几

(2)求乙比甲少百分之几的问题的解题规律:

(甲—乙)÷甲=百分之几 或 1—乙÷甲=百分之几

2. (1)求一个数的百分之几是多少的应用题的规律:

一个数(单位“1” )×百分率=部分量

(2)已知一个数的百分之几是多少,求这个数的应用题的解题规律:

部分量÷百分率=一个数(单位“1”)

这里的部分量与百分率要相对应。

3. 折扣:商品按原定价格的百分之几出售,叫折扣。

4. 纳税:

(1)应纳税额:就是缴纳的税款。

(2)税率:应纳税额与各种收入的比率叫税率。

(3)应纳税额=总收入×税率

5. 利率

三个概念:本金、利息、利率

利息=本金×利率×时间

★分数乘法

1、 分数乘整数的意义与计算法则:分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算;分数乘整数用分数的分子和整数相乘的积作分子,分母不变。

2、 一个数乘分数的意义与计算法则:一个数与分数相乘,可以看作是求这个数的 几分之几是多少。一个数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

3、 分数乘加、乘减混合运算的运算顺序和整数的运算顺序相同。

4、 整数乘法的运算定律(乘法交换律、结合律、分配律)对分数乘法同样适用。运用乘法的运算定律可以使一些计算简便。

5、 求一个数的几分之几是多少的问题的解题规律:

一个数(单位“1”)×几分之几=部分量(与几分之几相对应的量)。

6、 倒数的意义:乘积是1的 两个数互为倒数。

7、 求一个数(0除外)的倒数的方法:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

★分数除法

1、 分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

2、 分数除法的计算法则:

甲数除以乙数(0除外),等于甲数乘乙数的倒数。

(1) 分数除以整数(0除外)、等于分数乘这个整数的倒数。

(2) 一个数除以分数,等于这个数乘以分数的倒数。

3、 已知一个数的几分之几是多少,求这个数的问题的解题规律:

部分量÷几分之几=一个数(单位“1”)

(这里的部分量与几分之几要相对应。)

4、 比的意义:两个数相除又叫做两个数的比。

5、 比、分数、除法三者之间的关系:

(1)内在联系:a:b=a÷b=a/b(b≠0)

(2)区别:

①意义不同:比是表示两个数(或量)的一种关系,除法是一种运算,分数是一个数;

②读法不同;

③表示方法不同;

④结果表示不同。

6、 比的基本性质:比的前项和后项同时乘或者同时除以相同的数(0除外),比值不变。

7、 化简比的意义:把两个数的比化成最简单的整数比。应用比的基本性质可以把比化成最简单的整数比。

8、 按比例分配应用题的解题规律:

(1) 按比例分配解法,先求出份数,再求各部分量占总数的几分之几,最后用总数(单位i“1”)乘各部分量占总数的几分之几求出各部分量。

(2) 归一解法,先求出每份是多少,再用每份数乘各部分量所占的份数,求出各部分量。

参考资料:不知道符不符合,呵呵

热心网友 时间:2023-10-30 15:08

432222222222222222222222222222222222

热心网友 时间:2023-10-30 15:09

几个文案:
http://wenku.baidu.com/link?url=tlHfSkr4mAi_jwHtp3Ehl8t6VS6p4fqgD1vwBmiW4aa7CxctWxBfGbw2s0qSP9IrJawD_5FBFMj4FiHZboFK-6HWPKNe8CsiQ3qkXkC6I-C

http://wenku.baidu.com/link?url=CfNJ9V2d8zaJLMNZ32YjUmItYIsD0XCcuZMq9hTd1L7PLf9xFHimjIt2pja70sZebFL-DKoexKG0zyeR5CQj4Bu7LZY1OPojE0ABxx5f3kO

http://wenku.baidu.com/link?url=_sABSsdzwLXetpf50C7UzcxZlUUSVvq7x12xrComUFxqsqu0AMi1CKOzMNhlNWHqndrimsUzGrFR6FXljf51eozZYw3gnNIIMv-v5YsdiRu

热心网友 时间:2023-10-30 15:09

七年级上数学复习提纲
第一章 丰富的图形世界
1、 生活中常见的几何体:圆柱、 、正方体、长方体、 、球
2、 常见几何体的分类:球体、柱体(圆柱、棱柱、正方体、长方体)、锥体(圆锥、棱锥)
3、 平面图形折成立体图形应注意:侧面的个数与底面图形的边数相等。
4、 圆柱的侧面展开图是一个长方形;表面全部展开是两个 和一个 ;圆锥的表面全部展开图是一个 和一个 ;正方体表面展开图是一个 和两个小正方形,;长方形的展开图是一个大 和两个 。
5、 特殊立体图形的截面图形:
(1)长方体、正方形的截面是:三角形、四边形(长方形、正方形、梯形、平行四边形)、五边形、 。
(2)圆柱的截面是: 、圆
(3)圆锥的截面是:三角形、 。
(4)球的截面是:
6、我们经常把从 看到的图形叫做主视图,从 看到的图叫做左视图,从 看到的图叫做俯视图。
7、常见立体图形的俯视图
几何体 长方体 正方体 圆锥 圆柱 球
主视图 正方形 长方形
俯视图 长方形 圆 圆
左视图 长方形 正方形
8、点动成 ,线动成 ,面动成 。

第二章 有理数
1 、正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数。
与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上“+”)。
2 、有理数
(1) 正整数、0、负整数统称 ,正分数和负分数统称 。
整数和分数统称 。0既不是 数,也不是 数。
(2) 通常用一条直线上的点表示数,这条直线叫数轴。
数轴三要素:原点、 、单位长度。
在直线上任取一个点表示数0,这个点叫做 。
(3) 只有符号不同的两个数叫做互为相反数。
例:2的相反数是 ;-2的相反数是 ;0的相反数是
(4) 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
3 、有理数的加减法
(1)有理数加法法则:
①同号两数相加,取相同的 ,并把绝对值 相加。
②绝对值不相等的异号两数相加,取 符号,并用 减去较小的绝对值。
互为相反数的两个数相加和为0。
③一个数同0相加,仍得这个数。
(2) 有理数减法法则:减去一个数,等于加这个数的相反数。
4、 有理数的乘除法
(1) 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
(2) 乘积是1的两个数互为倒数。例:- 的倒数是 ;绝对值是 ;相反数是 。
(3) 有理数除法法则1:除以一个不等于0的数,等于乘这个数的倒数。
有理数除法法则2:两数相除,同号得 ,异号得 ,并把 相除。0除以任何一个不等于0的数,都得0。
(4) 求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是 。正数的任何次幂都是正数,0的任何次幂都是0。-1的奇次方是 ;-1的偶次方是 。

第三章、字母表示数
1、用运算符号把数和表示数的字母连接而成的字母叫做代数式。
2、求代数式值要注意:字母的取值必须确保代数式有意义;字母的取值要确保它本身所表示的数量有意义。
3、代数式的系数应包括这一项前的符号;如果代数式的某一项只含有字母因数,它的系数就是1或-1,而不是0。
4、同类项所含的 相同;相同字母的 也相同。
注意:同类项与系数无关,与字母的排列顺序无关;几个常数项也是同类项。
5、合并同类项法则:在合并同类项时,把同类项的系数相加, 不变。
6、去括号法则:
(1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里的
(2)括号前市“-”号,把括号和它前面的“-”号去掉后,原括号里

第四章 平面图形及位置关系
1、直线、射线、线段
(1) 直线、射线、线段的区别:直线 端点:射线 个端点:线段有 个端点。
(2) 线段公理:两点的所有连线中,线段 (两点之间,线段最短)。
连接两点间的线段的长度,叫做 。
(3)线段的比较方法:叠和法和度量法。
(4)线段的中点:如果M是AB的中点,那么 ;反之,如果点M在
线段AB上,并且有(AB=BM),那么点M是AB的中点。
例:C是线段AB的中点,可得AC= = ,或者2AC= =AB,
AC+ =AB , BC=AB- 。
2、角的度量与表示
(1) 1度= ; 1分= ; 1周角= 度 ;1平角= 度= 周角
(2)角的三种表示方法:用三个大写英文字母表示或用一个大写英文字母表示(如:<ABC,<A;用希腊字母表示(如<β);用数字表示(如<1,<2
3、 角的比较与运算
(1)角按大小分可分为锐角、直角、钝角、平角、周角。
(2)角平分线把一个角分成两个相等的角,角平分线是一条射线。
如果射线OC是<AOB的角平分线,则我们可知道<AOC= =
<AOB=2<BOC= ,<AOC+ =<AOB,<BOC=<AOB-
4、平行线
(1)如何画平行线?
(2)平行线的性质1:过直线外一点 与已知直线平行;
平行线的性质2:两条直线都与第三条直线平行,那么这两条直线也 。
5、垂直
(1) 如何画垂线?
(2) 垂线的性质1:过一点 一条直线与已知直线 。
垂线的性质2:直线外一点与直线上任意一点的连线中, 最短。
垂直的性质3:点到直线的距离。
6、 有趣的七巧板:
七巧板是由5个等腰直角三角形,一个 ,一个 组成的。

第五章 一元一次方程
1、 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数x,未知数x的指数都是 ,这样的方程叫做一元一次方程。
就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
2、等式的性质:
(1). 等式两边加(或减)同一个数(或式子),结果仍相等。
(2) 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
3、把等式一边的某项变号后移到另一边,叫做移项。(要移就得变)
4、在日历牌中,一个竖列上相邻两个数相差 , 的数比 的数大7;一个横行上相邻的两个数相差 , 的数比 的数大1。
5、常用体积公式:
长方形的体积=长X宽X ; 正方形的体积=边长X边长X边长 ;
棱柱的体积= x高; 圆柱的体积=底面积X ;
圆锥的体积= X高。
6、常用的相等关系:
(1)利润=售价- ;利润率=利润÷成本(进价)
(2) 利息=本金X利率X ; 本息和=本金+利息=本金X(1+利率X期数)
利息税=利息X税率=本金X利率X X ;
贷款利息=贷款金额X X 。
7、行程问题的主要类型及相等关系:
(1) 追及问题:甲乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。
(2) 问题:甲乙相向而行,则:甲走的路程+ =总路程。
8、解应用题的关键是 。

第六章生活中的数据
1、把一个大于10的数表示成 的形式(其中1≤a<10,n为正整数),就叫 。
(从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。)
2、扇形统计图的性质:各扇形分别代表每部分在 ;各扇形占整个圆的百分比之和为 。
3、 (1) 扇形圆心角的度数= X该部分占总体的 ;
(2) 每部分占总体的百分比=部分数量÷ =该部分所对应圆心角的度数与 的比。
4、制作扇形统计图的步骤是什么?
5、各统计图的特点:
(1)扇形统计图能清楚地表示出 ;
(2)折线统计图能清楚地反映 ;
(3)条形统计图能清楚地表现出 。

第七章 可能性
必然事件:事先能肯定它
确定事件{不可能事件:事先能肯定它一定
事件{不确定事件:事先无法肯定它
1、事情发生的可能性的大小:
机会大的不确定事件不一定发生,机会小的不确定事件也不一定不发生,机会大大小只能说明发生的程度不同。
2、要学会判断事情发生的可能性的大小。
------------------------------------------------------------------------------------------------------------------------数学复习提纲(一)

★扇形统计图:

1. 扇形统计图的意义:用整个圆表示总数,用圆内各个扇形的大小表示各部分占总数的百分数。

2. 扇形统计图的特点:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系。

3. 从统计图中获取信息:综合观察,联系实际解读出统计图反映的情况,并能做简单的分析、判断。

4. 结合统计图解决问题:根据统计图中提供的数据和题中已知条件,应用百分数的知识,解决题中的问题和实际生活中的问题。

★数学广角

1. 鸡兔同笼问题的特点:题中有两个或两个以上未知单量,要求根据两个或两个以上未知量的总数量,求出两个单量或两个以上的单量。

2. 鸡兔同笼问题的解题方法:(1)猜测法(2)假设法:先做出某种假设,根据设想进行推算,如果推出的结果与题意矛盾,再做适当调整,找出正确答案。(3)方程解法:设其中一个量为X,根据等量关系式列出方程。

★位置

1. 列、行的意义:竖排称为列, 横排称为行。

2. 数对的表示:(列、行)

★圆

一、圆的认识

1、 半径:连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。

直径:通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。

2、 圆规画圆的方法:

先把圆规的两脚分开,用直尺定好两脚之间的距离(定半径r)。

再把有针尖的一脚固定在一点上(定圆心O)。

再有铅笔的一脚旋转一周。

3、 圆的特点:

1)圆有无数条直径,也有无数条半径。

2) 同圆或等圆内,所有的直径都相等,所有的半径也都相等。

3) 同圆或等圆内,直径是半径的2倍,半径是直径的一半,即:d=2r r=d/2

4) 圆有无数条对称轴,每一条直径所在的直线,都是它的对称轴。

5) 圆的位置由圆心决定,大小由半径/直径决定。

6)两端都在圆上的线段中,直径最长。

二、圆的周长(化曲为直的推导过程)

1、圆周率(π):任意一个圆的周长和它的直径的比值都是一个固定的数,这个比就叫圆周率。

1)圆周率(π)

2)π是无限不循环小数

2、三组公式

d=2r

d=c/π

r=d/2

r=c/2π

c=πd

c=2πr

三、圆的面积(化圆为方的推导过程要了解,书上的例题要看看。)

S=π×r的平方

S环形=π×R的平方—π×r的平方

★百分数

一、百分数的意义

表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫做百分比和百分率。

二、百分数与分数、小数的互化

1.小数变百分数:将小数的小数点向右移动2位(分子×100)。同时在后面加上“%”(分母×100)。

百分数变小数:去“%”,同时小数点左移2位

2、分数变百分数:

方法一:先把分数转化成小数(即分子除以分母),再把小数转化成百分数。除不尽时,保留三位小数。

方法二:分母是100的因数(如5,10,20,25,50)时,直接把分数转化成分母是100的分数,再写成百分数。

百分数变分数:先写成分母是100的分数,再化简。

3. 百分数和分数的不同

分数既可以表示两个数之间的关系,也可以表示一个具体的数,而百分数只能表示两个数之间的关系。

四、常用的的求“率”的公式:

(课堂上已经做了笔记要求记熟,并会举一反三说出相应的数量关系式。如:合格率=合格的人数÷总人数×100% 合格的人数=总人数×合格率

总人数=合格的人数÷合格率)

数学复习提纲(二)

★百分数(补充添加)

1.求一个数比另一个数多或少百分之几的问题:

(1)甲比乙多百分之几的问题解题规律:

(甲—乙)÷乙=百分之几 或 甲÷乙—1=百分之几

(2)求乙比甲少百分之几的问题的解题规律:

(甲—乙)÷甲=百分之几 或 1—乙÷甲=百分之几

2. (1)求一个数的百分之几是多少的应用题的规律:

一个数(单位“1” )×百分率=部分量

(2)已知一个数的百分之几是多少,求这个数的应用题的解题规律:

部分量÷百分率=一个数(单位“1”)

这里的部分量与百分率要相对应。

3. 折扣:商品按原定价格的百分之几出售,叫折扣。

4. 纳税:

(1)应纳税额:就是缴纳的税款。

(2)税率:应纳税额与各种收入的比率叫税率。

(3)应纳税额=总收入×税率

5. 利率

三个概念:本金、利息、利率

利息=本金×利率×时间

★分数乘法

1、 分数乘整数的意义与计算法则:分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算;分数乘整数用分数的分子和整数相乘的积作分子,分母不变。

2、 一个数乘分数的意义与计算法则:一个数与分数相乘,可以看作是求这个数的 几分之几是多少。一个数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

3、 分数乘加、乘减混合运算的运算顺序和整数的运算顺序相同。

4、 整数乘法的运算定律(乘法交换律、结合律、分配律)对分数乘法同样适用。运用乘法的运算定律可以使一些计算简便。

5、 求一个数的几分之几是多少的问题的解题规律:

一个数(单位“1”)×几分之几=部分量(与几分之几相对应的量)。

6、 倒数的意义:乘积是1的 两个数互为倒数。

7、 求一个数(0除外)的倒数的方法:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

★分数除法

1、 分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

2、 分数除法的计算法则:

甲数除以乙数(0除外),等于甲数乘乙数的倒数。

(1) 分数除以整数(0除外)、等于分数乘这个整数的倒数。

(2) 一个数除以分数,等于这个数乘以分数的倒数。

3、 已知一个数的几分之几是多少,求这个数的问题的解题规律:

部分量÷几分之几=一个数(单位“1”)

(这里的部分量与几分之几要相对应。)

4、 比的意义:两个数相除又叫做两个数的比。

5、 比、分数、除法三者之间的关系:

(1)内在联系:a:b=a÷b=a/b(b≠0)

(2)区别:

①意义不同:比是表示两个数(或量)的一种关系,除法是一种运算,分数是一个数;

②读法不同;

③表示方法不同;

④结果表示不同。

6、 比的基本性质:比的前项和后项同时乘或者同时除以相同的数(0除外),比值不变。

7、 化简比的意义:把两个数的比化成最简单的整数比。应用比的基本性质可以把比化成最简单的整数比。

8、 按比例分配应用题的解题规律:

(1) 按比例分配解法,先求出份数,再求各部分量占总数的几分之几,最后用总数(单位i“1”)乘各部分量占总数的几分之几求出各部分量。

(2) 归一解法,先求出每份是多少,再用每份数乘各部分量所占的份数,求出各部分量。

参考资料:不知道符不符合,呵呵

热心网友 时间:2023-10-30 15:08

432222222222222222222222222222222222

热心网友 时间:2023-10-30 15:09

几个文案:
http://wenku.baidu.com/link?url=tlHfSkr4mAi_jwHtp3Ehl8t6VS6p4fqgD1vwBmiW4aa7CxctWxBfGbw2s0qSP9IrJawD_5FBFMj4FiHZboFK-6HWPKNe8CsiQ3qkXkC6I-C

http://wenku.baidu.com/link?url=CfNJ9V2d8zaJLMNZ32YjUmItYIsD0XCcuZMq9hTd1L7PLf9xFHimjIt2pja70sZebFL-DKoexKG0zyeR5CQj4Bu7LZY1OPojE0ABxx5f3kO

http://wenku.baidu.com/link?url=_sABSsdzwLXetpf50C7UzcxZlUUSVvq7x12xrComUFxqsqu0AMi1CKOzMNhlNWHqndrimsUzGrFR6FXljf51eozZYw3gnNIIMv-v5YsdiRu

热心网友 时间:2023-10-30 15:09

七年级上数学复习提纲
第一章 丰富的图形世界
1、 生活中常见的几何体:圆柱、 、正方体、长方体、 、球
2、 常见几何体的分类:球体、柱体(圆柱、棱柱、正方体、长方体)、锥体(圆锥、棱锥)
3、 平面图形折成立体图形应注意:侧面的个数与底面图形的边数相等。
4、 圆柱的侧面展开图是一个长方形;表面全部展开是两个 和一个 ;圆锥的表面全部展开图是一个 和一个 ;正方体表面展开图是一个 和两个小正方形,;长方形的展开图是一个大 和两个 。
5、 特殊立体图形的截面图形:
(1)长方体、正方形的截面是:三角形、四边形(长方形、正方形、梯形、平行四边形)、五边形、 。
(2)圆柱的截面是: 、圆
(3)圆锥的截面是:三角形、 。
(4)球的截面是:
6、我们经常把从 看到的图形叫做主视图,从 看到的图叫做左视图,从 看到的图叫做俯视图。
7、常见立体图形的俯视图
几何体 长方体 正方体 圆锥 圆柱 球
主视图 正方形 长方形
俯视图 长方形 圆 圆
左视图 长方形 正方形
8、点动成 ,线动成 ,面动成 。

第二章 有理数
1 、正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数。
与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上“+”)。
2 、有理数
(1) 正整数、0、负整数统称 ,正分数和负分数统称 。
整数和分数统称 。0既不是 数,也不是 数。
(2) 通常用一条直线上的点表示数,这条直线叫数轴。
数轴三要素:原点、 、单位长度。
在直线上任取一个点表示数0,这个点叫做 。
(3) 只有符号不同的两个数叫做互为相反数。
例:2的相反数是 ;-2的相反数是 ;0的相反数是
(4) 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
3 、有理数的加减法
(1)有理数加法法则:
①同号两数相加,取相同的 ,并把绝对值 相加。
②绝对值不相等的异号两数相加,取 符号,并用 减去较小的绝对值。
互为相反数的两个数相加和为0。
③一个数同0相加,仍得这个数。
(2) 有理数减法法则:减去一个数,等于加这个数的相反数。
4、 有理数的乘除法
(1) 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
(2) 乘积是1的两个数互为倒数。例:- 的倒数是 ;绝对值是 ;相反数是 。
(3) 有理数除法法则1:除以一个不等于0的数,等于乘这个数的倒数。
有理数除法法则2:两数相除,同号得 ,异号得 ,并把 相除。0除以任何一个不等于0的数,都得0。
(4) 求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是 。正数的任何次幂都是正数,0的任何次幂都是0。-1的奇次方是 ;-1的偶次方是 。

第三章、字母表示数
1、用运算符号把数和表示数的字母连接而成的字母叫做代数式。
2、求代数式值要注意:字母的取值必须确保代数式有意义;字母的取值要确保它本身所表示的数量有意义。
3、代数式的系数应包括这一项前的符号;如果代数式的某一项只含有字母因数,它的系数就是1或-1,而不是0。
4、同类项所含的 相同;相同字母的 也相同。
注意:同类项与系数无关,与字母的排列顺序无关;几个常数项也是同类项。
5、合并同类项法则:在合并同类项时,把同类项的系数相加, 不变。
6、去括号法则:
(1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里的
(2)括号前市“-”号,把括号和它前面的“-”号去掉后,原括号里

第四章 平面图形及位置关系
1、直线、射线、线段
(1) 直线、射线、线段的区别:直线 端点:射线 个端点:线段有 个端点。
(2) 线段公理:两点的所有连线中,线段 (两点之间,线段最短)。
连接两点间的线段的长度,叫做 。
(3)线段的比较方法:叠和法和度量法。
(4)线段的中点:如果M是AB的中点,那么 ;反之,如果点M在
线段AB上,并且有(AB=BM),那么点M是AB的中点。
例:C是线段AB的中点,可得AC= = ,或者2AC= =AB,
AC+ =AB , BC=AB- 。
2、角的度量与表示
(1) 1度= ; 1分= ; 1周角= 度 ;1平角= 度= 周角
(2)角的三种表示方法:用三个大写英文字母表示或用一个大写英文字母表示(如:<ABC,<A;用希腊字母表示(如<β);用数字表示(如<1,<2
3、 角的比较与运算
(1)角按大小分可分为锐角、直角、钝角、平角、周角。
(2)角平分线把一个角分成两个相等的角,角平分线是一条射线。
如果射线OC是<AOB的角平分线,则我们可知道<AOC= =
<AOB=2<BOC= ,<AOC+ =<AOB,<BOC=<AOB-
4、平行线
(1)如何画平行线?
(2)平行线的性质1:过直线外一点 与已知直线平行;
平行线的性质2:两条直线都与第三条直线平行,那么这两条直线也 。
5、垂直
(1) 如何画垂线?
(2) 垂线的性质1:过一点 一条直线与已知直线 。
垂线的性质2:直线外一点与直线上任意一点的连线中, 最短。
垂直的性质3:点到直线的距离。
6、 有趣的七巧板:
七巧板是由5个等腰直角三角形,一个 ,一个 组成的。

第五章 一元一次方程
1、 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数x,未知数x的指数都是 ,这样的方程叫做一元一次方程。
就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
2、等式的性质:
(1). 等式两边加(或减)同一个数(或式子),结果仍相等。
(2) 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
3、把等式一边的某项变号后移到另一边,叫做移项。(要移就得变)
4、在日历牌中,一个竖列上相邻两个数相差 , 的数比 的数大7;一个横行上相邻的两个数相差 , 的数比 的数大1。
5、常用体积公式:
长方形的体积=长X宽X ; 正方形的体积=边长X边长X边长 ;
棱柱的体积= x高; 圆柱的体积=底面积X ;
圆锥的体积= X高。
6、常用的相等关系:
(1)利润=售价- ;利润率=利润÷成本(进价)
(2) 利息=本金X利率X ; 本息和=本金+利息=本金X(1+利率X期数)
利息税=利息X税率=本金X利率X X ;
贷款利息=贷款金额X X 。
7、行程问题的主要类型及相等关系:
(1) 追及问题:甲乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。
(2) 问题:甲乙相向而行,则:甲走的路程+ =总路程。
8、解应用题的关键是 。

第六章生活中的数据
1、把一个大于10的数表示成 的形式(其中1≤a<10,n为正整数),就叫 。
(从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。)
2、扇形统计图的性质:各扇形分别代表每部分在 ;各扇形占整个圆的百分比之和为 。
3、 (1) 扇形圆心角的度数= X该部分占总体的 ;
(2) 每部分占总体的百分比=部分数量÷ =该部分所对应圆心角的度数与 的比。
4、制作扇形统计图的步骤是什么?
5、各统计图的特点:
(1)扇形统计图能清楚地表示出 ;
(2)折线统计图能清楚地反映 ;
(3)条形统计图能清楚地表现出 。

第七章 可能性
必然事件:事先能肯定它
确定事件{不可能事件:事先能肯定它一定
事件{不确定事件:事先无法肯定它
1、事情发生的可能性的大小:
机会大的不确定事件不一定发生,机会小的不确定事件也不一定不发生,机会大大小只能说明发生的程度不同。
2、要学会判断事情发生的可能性的大小。
------------------------------------------------------------------------------------------------------------------------数学复习提纲(一)

★扇形统计图:

1. 扇形统计图的意义:用整个圆表示总数,用圆内各个扇形的大小表示各部分占总数的百分数。

2. 扇形统计图的特点:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系。

3. 从统计图中获取信息:综合观察,联系实际解读出统计图反映的情况,并能做简单的分析、判断。

4. 结合统计图解决问题:根据统计图中提供的数据和题中已知条件,应用百分数的知识,解决题中的问题和实际生活中的问题。

★数学广角

1. 鸡兔同笼问题的特点:题中有两个或两个以上未知单量,要求根据两个或两个以上未知量的总数量,求出两个单量或两个以上的单量。

2. 鸡兔同笼问题的解题方法:(1)猜测法(2)假设法:先做出某种假设,根据设想进行推算,如果推出的结果与题意矛盾,再做适当调整,找出正确答案。(3)方程解法:设其中一个量为X,根据等量关系式列出方程。

★位置

1. 列、行的意义:竖排称为列, 横排称为行。

2. 数对的表示:(列、行)

★圆

一、圆的认识

1、 半径:连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。

直径:通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。

2、 圆规画圆的方法:

先把圆规的两脚分开,用直尺定好两脚之间的距离(定半径r)。

再把有针尖的一脚固定在一点上(定圆心O)。

再有铅笔的一脚旋转一周。

3、 圆的特点:

1)圆有无数条直径,也有无数条半径。

2) 同圆或等圆内,所有的直径都相等,所有的半径也都相等。

3) 同圆或等圆内,直径是半径的2倍,半径是直径的一半,即:d=2r r=d/2

4) 圆有无数条对称轴,每一条直径所在的直线,都是它的对称轴。

5) 圆的位置由圆心决定,大小由半径/直径决定。

6)两端都在圆上的线段中,直径最长。

二、圆的周长(化曲为直的推导过程)

1、圆周率(π):任意一个圆的周长和它的直径的比值都是一个固定的数,这个比就叫圆周率。

1)圆周率(π)

2)π是无限不循环小数

2、三组公式

d=2r

d=c/π

r=d/2

r=c/2π

c=πd

c=2πr

三、圆的面积(化圆为方的推导过程要了解,书上的例题要看看。)

S=π×r的平方

S环形=π×R的平方—π×r的平方

★百分数

一、百分数的意义

表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫做百分比和百分率。

二、百分数与分数、小数的互化

1.小数变百分数:将小数的小数点向右移动2位(分子×100)。同时在后面加上“%”(分母×100)。

百分数变小数:去“%”,同时小数点左移2位

2、分数变百分数:

方法一:先把分数转化成小数(即分子除以分母),再把小数转化成百分数。除不尽时,保留三位小数。

方法二:分母是100的因数(如5,10,20,25,50)时,直接把分数转化成分母是100的分数,再写成百分数。

百分数变分数:先写成分母是100的分数,再化简。

3. 百分数和分数的不同

分数既可以表示两个数之间的关系,也可以表示一个具体的数,而百分数只能表示两个数之间的关系。

四、常用的的求“率”的公式:

(课堂上已经做了笔记要求记熟,并会举一反三说出相应的数量关系式。如:合格率=合格的人数÷总人数×100% 合格的人数=总人数×合格率

总人数=合格的人数÷合格率)

数学复习提纲(二)

★百分数(补充添加)

1.求一个数比另一个数多或少百分之几的问题:

(1)甲比乙多百分之几的问题解题规律:

(甲—乙)÷乙=百分之几 或 甲÷乙—1=百分之几

(2)求乙比甲少百分之几的问题的解题规律:

(甲—乙)÷甲=百分之几 或 1—乙÷甲=百分之几

2. (1)求一个数的百分之几是多少的应用题的规律:

一个数(单位“1” )×百分率=部分量

(2)已知一个数的百分之几是多少,求这个数的应用题的解题规律:

部分量÷百分率=一个数(单位“1”)

这里的部分量与百分率要相对应。

3. 折扣:商品按原定价格的百分之几出售,叫折扣。

4. 纳税:

(1)应纳税额:就是缴纳的税款。

(2)税率:应纳税额与各种收入的比率叫税率。

(3)应纳税额=总收入×税率

5. 利率

三个概念:本金、利息、利率

利息=本金×利率×时间

★分数乘法

1、 分数乘整数的意义与计算法则:分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算;分数乘整数用分数的分子和整数相乘的积作分子,分母不变。

2、 一个数乘分数的意义与计算法则:一个数与分数相乘,可以看作是求这个数的 几分之几是多少。一个数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

3、 分数乘加、乘减混合运算的运算顺序和整数的运算顺序相同。

4、 整数乘法的运算定律(乘法交换律、结合律、分配律)对分数乘法同样适用。运用乘法的运算定律可以使一些计算简便。

5、 求一个数的几分之几是多少的问题的解题规律:

一个数(单位“1”)×几分之几=部分量(与几分之几相对应的量)。

6、 倒数的意义:乘积是1的 两个数互为倒数。

7、 求一个数(0除外)的倒数的方法:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

★分数除法

1、 分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

2、 分数除法的计算法则:

甲数除以乙数(0除外),等于甲数乘乙数的倒数。

(1) 分数除以整数(0除外)、等于分数乘这个整数的倒数。

(2) 一个数除以分数,等于这个数乘以分数的倒数。

3、 已知一个数的几分之几是多少,求这个数的问题的解题规律:

部分量÷几分之几=一个数(单位“1”)

(这里的部分量与几分之几要相对应。)

4、 比的意义:两个数相除又叫做两个数的比。

5、 比、分数、除法三者之间的关系:

(1)内在联系:a:b=a÷b=a/b(b≠0)

(2)区别:

①意义不同:比是表示两个数(或量)的一种关系,除法是一种运算,分数是一个数;

②读法不同;

③表示方法不同;

④结果表示不同。

6、 比的基本性质:比的前项和后项同时乘或者同时除以相同的数(0除外),比值不变。

7、 化简比的意义:把两个数的比化成最简单的整数比。应用比的基本性质可以把比化成最简单的整数比。

8、 按比例分配应用题的解题规律:

(1) 按比例分配解法,先求出份数,再求各部分量占总数的几分之几,最后用总数(单位i“1”)乘各部分量占总数的几分之几求出各部分量。

(2) 归一解法,先求出每份是多少,再用每份数乘各部分量所占的份数,求出各部分量。

参考资料:不知道符不符合,呵呵

热心网友 时间:2023-10-30 15:08

432222222222222222222222222222222222

热心网友 时间:2023-10-30 15:09

几个文案:
http://wenku.baidu.com/link?url=tlHfSkr4mAi_jwHtp3Ehl8t6VS6p4fqgD1vwBmiW4aa7CxctWxBfGbw2s0qSP9IrJawD_5FBFMj4FiHZboFK-6HWPKNe8CsiQ3qkXkC6I-C

http://wenku.baidu.com/link?url=CfNJ9V2d8zaJLMNZ32YjUmItYIsD0XCcuZMq9hTd1L7PLf9xFHimjIt2pja70sZebFL-DKoexKG0zyeR5CQj4Bu7LZY1OPojE0ABxx5f3kO

http://wenku.baidu.com/link?url=_sABSsdzwLXetpf50C7UzcxZlUUSVvq7x12xrComUFxqsqu0AMi1CKOzMNhlNWHqndrimsUzGrFR6FXljf51eozZYw3gnNIIMv-v5YsdiRu

热心网友 时间:2023-10-30 15:09

七年级上数学复习提纲
第一章 丰富的图形世界
1、 生活中常见的几何体:圆柱、 、正方体、长方体、 、球
2、 常见几何体的分类:球体、柱体(圆柱、棱柱、正方体、长方体)、锥体(圆锥、棱锥)
3、 平面图形折成立体图形应注意:侧面的个数与底面图形的边数相等。
4、 圆柱的侧面展开图是一个长方形;表面全部展开是两个 和一个 ;圆锥的表面全部展开图是一个 和一个 ;正方体表面展开图是一个 和两个小正方形,;长方形的展开图是一个大 和两个 。
5、 特殊立体图形的截面图形:
(1)长方体、正方形的截面是:三角形、四边形(长方形、正方形、梯形、平行四边形)、五边形、 。
(2)圆柱的截面是: 、圆
(3)圆锥的截面是:三角形、 。
(4)球的截面是:
6、我们经常把从 看到的图形叫做主视图,从 看到的图叫做左视图,从 看到的图叫做俯视图。
7、常见立体图形的俯视图
几何体 长方体 正方体 圆锥 圆柱 球
主视图 正方形 长方形
俯视图 长方形 圆 圆
左视图 长方形 正方形
8、点动成 ,线动成 ,面动成 。

第二章 有理数
1 、正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数。
与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上“+”)。
2 、有理数
(1) 正整数、0、负整数统称 ,正分数和负分数统称 。
整数和分数统称 。0既不是 数,也不是 数。
(2) 通常用一条直线上的点表示数,这条直线叫数轴。
数轴三要素:原点、 、单位长度。
在直线上任取一个点表示数0,这个点叫做 。
(3) 只有符号不同的两个数叫做互为相反数。
例:2的相反数是 ;-2的相反数是 ;0的相反数是
(4) 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
3 、有理数的加减法
(1)有理数加法法则:
①同号两数相加,取相同的 ,并把绝对值 相加。
②绝对值不相等的异号两数相加,取 符号,并用 减去较小的绝对值。
互为相反数的两个数相加和为0。
③一个数同0相加,仍得这个数。
(2) 有理数减法法则:减去一个数,等于加这个数的相反数。
4、 有理数的乘除法
(1) 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
(2) 乘积是1的两个数互为倒数。例:- 的倒数是 ;绝对值是 ;相反数是 。
(3) 有理数除法法则1:除以一个不等于0的数,等于乘这个数的倒数。
有理数除法法则2:两数相除,同号得 ,异号得 ,并把 相除。0除以任何一个不等于0的数,都得0。
(4) 求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是 。正数的任何次幂都是正数,0的任何次幂都是0。-1的奇次方是 ;-1的偶次方是 。

第三章、字母表示数
1、用运算符号把数和表示数的字母连接而成的字母叫做代数式。
2、求代数式值要注意:字母的取值必须确保代数式有意义;字母的取值要确保它本身所表示的数量有意义。
3、代数式的系数应包括这一项前的符号;如果代数式的某一项只含有字母因数,它的系数就是1或-1,而不是0。
4、同类项所含的 相同;相同字母的 也相同。
注意:同类项与系数无关,与字母的排列顺序无关;几个常数项也是同类项。
5、合并同类项法则:在合并同类项时,把同类项的系数相加, 不变。
6、去括号法则:
(1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里的
(2)括号前市“-”号,把括号和它前面的“-”号去掉后,原括号里

第四章 平面图形及位置关系
1、直线、射线、线段
(1) 直线、射线、线段的区别:直线 端点:射线 个端点:线段有 个端点。
(2) 线段公理:两点的所有连线中,线段 (两点之间,线段最短)。
连接两点间的线段的长度,叫做 。
(3)线段的比较方法:叠和法和度量法。
(4)线段的中点:如果M是AB的中点,那么 ;反之,如果点M在
线段AB上,并且有(AB=BM),那么点M是AB的中点。
例:C是线段AB的中点,可得AC= = ,或者2AC= =AB,
AC+ =AB , BC=AB- 。
2、角的度量与表示
(1) 1度= ; 1分= ; 1周角= 度 ;1平角= 度= 周角
(2)角的三种表示方法:用三个大写英文字母表示或用一个大写英文字母表示(如:<ABC,<A;用希腊字母表示(如<β);用数字表示(如<1,<2
3、 角的比较与运算
(1)角按大小分可分为锐角、直角、钝角、平角、周角。
(2)角平分线把一个角分成两个相等的角,角平分线是一条射线。
如果射线OC是<AOB的角平分线,则我们可知道<AOC= =
<AOB=2<BOC= ,<AOC+ =<AOB,<BOC=<AOB-
4、平行线
(1)如何画平行线?
(2)平行线的性质1:过直线外一点 与已知直线平行;
平行线的性质2:两条直线都与第三条直线平行,那么这两条直线也 。
5、垂直
(1) 如何画垂线?
(2) 垂线的性质1:过一点 一条直线与已知直线 。
垂线的性质2:直线外一点与直线上任意一点的连线中, 最短。
垂直的性质3:点到直线的距离。
6、 有趣的七巧板:
七巧板是由5个等腰直角三角形,一个 ,一个 组成的。

第五章 一元一次方程
1、 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数x,未知数x的指数都是 ,这样的方程叫做一元一次方程。
就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
2、等式的性质:
(1). 等式两边加(或减)同一个数(或式子),结果仍相等。
(2) 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
3、把等式一边的某项变号后移到另一边,叫做移项。(要移就得变)
4、在日历牌中,一个竖列上相邻两个数相差 , 的数比 的数大7;一个横行上相邻的两个数相差 , 的数比 的数大1。
5、常用体积公式:
长方形的体积=长X宽X ; 正方形的体积=边长X边长X边长 ;
棱柱的体积= x高; 圆柱的体积=底面积X ;
圆锥的体积= X高。
6、常用的相等关系:
(1)利润=售价- ;利润率=利润÷成本(进价)
(2) 利息=本金X利率X ; 本息和=本金+利息=本金X(1+利率X期数)
利息税=利息X税率=本金X利率X X ;
贷款利息=贷款金额X X 。
7、行程问题的主要类型及相等关系:
(1) 追及问题:甲乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。
(2) 问题:甲乙相向而行,则:甲走的路程+ =总路程。
8、解应用题的关键是 。

第六章生活中的数据
1、把一个大于10的数表示成 的形式(其中1≤a<10,n为正整数),就叫 。
(从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。)
2、扇形统计图的性质:各扇形分别代表每部分在 ;各扇形占整个圆的百分比之和为 。
3、 (1) 扇形圆心角的度数= X该部分占总体的 ;
(2) 每部分占总体的百分比=部分数量÷ =该部分所对应圆心角的度数与 的比。
4、制作扇形统计图的步骤是什么?
5、各统计图的特点:
(1)扇形统计图能清楚地表示出 ;
(2)折线统计图能清楚地反映 ;
(3)条形统计图能清楚地表现出 。

第七章 可能性
必然事件:事先能肯定它
确定事件{不可能事件:事先能肯定它一定
事件{不确定事件:事先无法肯定它
1、事情发生的可能性的大小:
机会大的不确定事件不一定发生,机会小的不确定事件也不一定不发生,机会大大小只能说明发生的程度不同。
2、要学会判断事情发生的可能性的大小。
------------------------------------------------------------------------------------------------------------------------数学复习提纲(一)

★扇形统计图:

1. 扇形统计图的意义:用整个圆表示总数,用圆内各个扇形的大小表示各部分占总数的百分数。

2. 扇形统计图的特点:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系。

3. 从统计图中获取信息:综合观察,联系实际解读出统计图反映的情况,并能做简单的分析、判断。

4. 结合统计图解决问题:根据统计图中提供的数据和题中已知条件,应用百分数的知识,解决题中的问题和实际生活中的问题。

★数学广角

1. 鸡兔同笼问题的特点:题中有两个或两个以上未知单量,要求根据两个或两个以上未知量的总数量,求出两个单量或两个以上的单量。

2. 鸡兔同笼问题的解题方法:(1)猜测法(2)假设法:先做出某种假设,根据设想进行推算,如果推出的结果与题意矛盾,再做适当调整,找出正确答案。(3)方程解法:设其中一个量为X,根据等量关系式列出方程。

★位置

1. 列、行的意义:竖排称为列, 横排称为行。

2. 数对的表示:(列、行)

★圆

一、圆的认识

1、 半径:连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。

直径:通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。

2、 圆规画圆的方法:

先把圆规的两脚分开,用直尺定好两脚之间的距离(定半径r)。

再把有针尖的一脚固定在一点上(定圆心O)。

再有铅笔的一脚旋转一周。

3、 圆的特点:

1)圆有无数条直径,也有无数条半径。

2) 同圆或等圆内,所有的直径都相等,所有的半径也都相等。

3) 同圆或等圆内,直径是半径的2倍,半径是直径的一半,即:d=2r r=d/2

4) 圆有无数条对称轴,每一条直径所在的直线,都是它的对称轴。

5) 圆的位置由圆心决定,大小由半径/直径决定。

6)两端都在圆上的线段中,直径最长。

二、圆的周长(化曲为直的推导过程)

1、圆周率(π):任意一个圆的周长和它的直径的比值都是一个固定的数,这个比就叫圆周率。

1)圆周率(π)

2)π是无限不循环小数

2、三组公式

d=2r

d=c/π

r=d/2

r=c/2π

c=πd

c=2πr

三、圆的面积(化圆为方的推导过程要了解,书上的例题要看看。)

S=π×r的平方

S环形=π×R的平方—π×r的平方

★百分数

一、百分数的意义

表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫做百分比和百分率。

二、百分数与分数、小数的互化

1.小数变百分数:将小数的小数点向右移动2位(分子×100)。同时在后面加上“%”(分母×100)。

百分数变小数:去“%”,同时小数点左移2位

2、分数变百分数:

方法一:先把分数转化成小数(即分子除以分母),再把小数转化成百分数。除不尽时,保留三位小数。

方法二:分母是100的因数(如5,10,20,25,50)时,直接把分数转化成分母是100的分数,再写成百分数。

百分数变分数:先写成分母是100的分数,再化简。

3. 百分数和分数的不同

分数既可以表示两个数之间的关系,也可以表示一个具体的数,而百分数只能表示两个数之间的关系。

四、常用的的求“率”的公式:

(课堂上已经做了笔记要求记熟,并会举一反三说出相应的数量关系式。如:合格率=合格的人数÷总人数×100% 合格的人数=总人数×合格率

总人数=合格的人数÷合格率)

数学复习提纲(二)

★百分数(补充添加)

1.求一个数比另一个数多或少百分之几的问题:

(1)甲比乙多百分之几的问题解题规律:

(甲—乙)÷乙=百分之几 或 甲÷乙—1=百分之几

(2)求乙比甲少百分之几的问题的解题规律:

(甲—乙)÷甲=百分之几 或 1—乙÷甲=百分之几

2. (1)求一个数的百分之几是多少的应用题的规律:

一个数(单位“1” )×百分率=部分量

(2)已知一个数的百分之几是多少,求这个数的应用题的解题规律:

部分量÷百分率=一个数(单位“1”)

这里的部分量与百分率要相对应。

3. 折扣:商品按原定价格的百分之几出售,叫折扣。

4. 纳税:

(1)应纳税额:就是缴纳的税款。

(2)税率:应纳税额与各种收入的比率叫税率。

(3)应纳税额=总收入×税率

5. 利率

三个概念:本金、利息、利率

利息=本金×利率×时间

★分数乘法

1、 分数乘整数的意义与计算法则:分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算;分数乘整数用分数的分子和整数相乘的积作分子,分母不变。

2、 一个数乘分数的意义与计算法则:一个数与分数相乘,可以看作是求这个数的 几分之几是多少。一个数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

3、 分数乘加、乘减混合运算的运算顺序和整数的运算顺序相同。

4、 整数乘法的运算定律(乘法交换律、结合律、分配律)对分数乘法同样适用。运用乘法的运算定律可以使一些计算简便。

5、 求一个数的几分之几是多少的问题的解题规律:

一个数(单位“1”)×几分之几=部分量(与几分之几相对应的量)。

6、 倒数的意义:乘积是1的 两个数互为倒数。

7、 求一个数(0除外)的倒数的方法:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

★分数除法

1、 分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

2、 分数除法的计算法则:

甲数除以乙数(0除外),等于甲数乘乙数的倒数。

(1) 分数除以整数(0除外)、等于分数乘这个整数的倒数。

(2) 一个数除以分数,等于这个数乘以分数的倒数。

3、 已知一个数的几分之几是多少,求这个数的问题的解题规律:

部分量÷几分之几=一个数(单位“1”)

(这里的部分量与几分之几要相对应。)

4、 比的意义:两个数相除又叫做两个数的比。

5、 比、分数、除法三者之间的关系:

(1)内在联系:a:b=a÷b=a/b(b≠0)

(2)区别:

①意义不同:比是表示两个数(或量)的一种关系,除法是一种运算,分数是一个数;

②读法不同;

③表示方法不同;

④结果表示不同。

6、 比的基本性质:比的前项和后项同时乘或者同时除以相同的数(0除外),比值不变。

7、 化简比的意义:把两个数的比化成最简单的整数比。应用比的基本性质可以把比化成最简单的整数比。

8、 按比例分配应用题的解题规律:

(1) 按比例分配解法,先求出份数,再求各部分量占总数的几分之几,最后用总数(单位i“1”)乘各部分量占总数的几分之几求出各部分量。

(2) 归一解法,先求出每份是多少,再用每份数乘各部分量所占的份数,求出各部分量。

参考资料:不知道符不符合,呵呵

热心网友 时间:2023-10-30 15:08

432222222222222222222222222222222222

热心网友 时间:2023-10-30 15:09

几个文案:
http://wenku.baidu.com/link?url=tlHfSkr4mAi_jwHtp3Ehl8t6VS6p4fqgD1vwBmiW4aa7CxctWxBfGbw2s0qSP9IrJawD_5FBFMj4FiHZboFK-6HWPKNe8CsiQ3qkXkC6I-C

http://wenku.baidu.com/link?url=CfNJ9V2d8zaJLMNZ32YjUmItYIsD0XCcuZMq9hTd1L7PLf9xFHimjIt2pja70sZebFL-DKoexKG0zyeR5CQj4Bu7LZY1OPojE0ABxx5f3kO

http://wenku.baidu.com/link?url=_sABSsdzwLXetpf50C7UzcxZlUUSVvq7x12xrComUFxqsqu0AMi1CKOzMNhlNWHqndrimsUzGrFR6FXljf51eozZYw3gnNIIMv-v5YsdiRu

热心网友 时间:2023-10-30 15:09

七年级上数学复习提纲
第一章 丰富的图形世界
1、 生活中常见的几何体:圆柱、 、正方体、长方体、 、球
2、 常见几何体的分类:球体、柱体(圆柱、棱柱、正方体、长方体)、锥体(圆锥、棱锥)
3、 平面图形折成立体图形应注意:侧面的个数与底面图形的边数相等。
4、 圆柱的侧面展开图是一个长方形;表面全部展开是两个 和一个 ;圆锥的表面全部展开图是一个 和一个 ;正方体表面展开图是一个 和两个小正方形,;长方形的展开图是一个大 和两个 。
5、 特殊立体图形的截面图形:
(1)长方体、正方形的截面是:三角形、四边形(长方形、正方形、梯形、平行四边形)、五边形、 。
(2)圆柱的截面是: 、圆
(3)圆锥的截面是:三角形、 。
(4)球的截面是:
6、我们经常把从 看到的图形叫做主视图,从 看到的图叫做左视图,从 看到的图叫做俯视图。
7、常见立体图形的俯视图
几何体 长方体 正方体 圆锥 圆柱 球
主视图 正方形 长方形
俯视图 长方形 圆 圆
左视图 长方形 正方形
8、点动成 ,线动成 ,面动成 。

第二章 有理数
1 、正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数。
与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上“+”)。
2 、有理数
(1) 正整数、0、负整数统称 ,正分数和负分数统称 。
整数和分数统称 。0既不是 数,也不是 数。
(2) 通常用一条直线上的点表示数,这条直线叫数轴。
数轴三要素:原点、 、单位长度。
在直线上任取一个点表示数0,这个点叫做 。
(3) 只有符号不同的两个数叫做互为相反数。
例:2的相反数是 ;-2的相反数是 ;0的相反数是
(4) 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
3 、有理数的加减法
(1)有理数加法法则:
①同号两数相加,取相同的 ,并把绝对值 相加。
②绝对值不相等的异号两数相加,取 符号,并用 减去较小的绝对值。
互为相反数的两个数相加和为0。
③一个数同0相加,仍得这个数。
(2) 有理数减法法则:减去一个数,等于加这个数的相反数。
4、 有理数的乘除法
(1) 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
(2) 乘积是1的两个数互为倒数。例:- 的倒数是 ;绝对值是 ;相反数是 。
(3) 有理数除法法则1:除以一个不等于0的数,等于乘这个数的倒数。
有理数除法法则2:两数相除,同号得 ,异号得 ,并把 相除。0除以任何一个不等于0的数,都得0。
(4) 求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是 。正数的任何次幂都是正数,0的任何次幂都是0。-1的奇次方是 ;-1的偶次方是 。

第三章、字母表示数
1、用运算符号把数和表示数的字母连接而成的字母叫做代数式。
2、求代数式值要注意:字母的取值必须确保代数式有意义;字母的取值要确保它本身所表示的数量有意义。
3、代数式的系数应包括这一项前的符号;如果代数式的某一项只含有字母因数,它的系数就是1或-1,而不是0。
4、同类项所含的 相同;相同字母的 也相同。
注意:同类项与系数无关,与字母的排列顺序无关;几个常数项也是同类项。
5、合并同类项法则:在合并同类项时,把同类项的系数相加, 不变。
6、去括号法则:
(1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里的
(2)括号前市“-”号,把括号和它前面的“-”号去掉后,原括号里

第四章 平面图形及位置关系
1、直线、射线、线段
(1) 直线、射线、线段的区别:直线 端点:射线 个端点:线段有 个端点。
(2) 线段公理:两点的所有连线中,线段 (两点之间,线段最短)。
连接两点间的线段的长度,叫做 。
(3)线段的比较方法:叠和法和度量法。
(4)线段的中点:如果M是AB的中点,那么 ;反之,如果点M在
线段AB上,并且有(AB=BM),那么点M是AB的中点。
例:C是线段AB的中点,可得AC= = ,或者2AC= =AB,
AC+ =AB , BC=AB- 。
2、角的度量与表示
(1) 1度= ; 1分= ; 1周角= 度 ;1平角= 度= 周角
(2)角的三种表示方法:用三个大写英文字母表示或用一个大写英文字母表示(如:<ABC,<A;用希腊字母表示(如<β);用数字表示(如<1,<2
3、 角的比较与运算
(1)角按大小分可分为锐角、直角、钝角、平角、周角。
(2)角平分线把一个角分成两个相等的角,角平分线是一条射线。
如果射线OC是<AOB的角平分线,则我们可知道<AOC= =
<AOB=2<BOC= ,<AOC+ =<AOB,<BOC=<AOB-
4、平行线
(1)如何画平行线?
(2)平行线的性质1:过直线外一点 与已知直线平行;
平行线的性质2:两条直线都与第三条直线平行,那么这两条直线也 。
5、垂直
(1) 如何画垂线?
(2) 垂线的性质1:过一点 一条直线与已知直线 。
垂线的性质2:直线外一点与直线上任意一点的连线中, 最短。
垂直的性质3:点到直线的距离。
6、 有趣的七巧板:
七巧板是由5个等腰直角三角形,一个 ,一个 组成的。

第五章 一元一次方程
1、 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数x,未知数x的指数都是 ,这样的方程叫做一元一次方程。
就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
2、等式的性质:
(1). 等式两边加(或减)同一个数(或式子),结果仍相等。
(2) 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
3、把等式一边的某项变号后移到另一边,叫做移项。(要移就得变)
4、在日历牌中,一个竖列上相邻两个数相差 , 的数比 的数大7;一个横行上相邻的两个数相差 , 的数比 的数大1。
5、常用体积公式:
长方形的体积=长X宽X ; 正方形的体积=边长X边长X边长 ;
棱柱的体积= x高; 圆柱的体积=底面积X ;
圆锥的体积= X高。
6、常用的相等关系:
(1)利润=售价- ;利润率=利润÷成本(进价)
(2) 利息=本金X利率X ; 本息和=本金+利息=本金X(1+利率X期数)
利息税=利息X税率=本金X利率X X ;
贷款利息=贷款金额X X 。
7、行程问题的主要类型及相等关系:
(1) 追及问题:甲乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。
(2) 问题:甲乙相向而行,则:甲走的路程+ =总路程。
8、解应用题的关键是 。

第六章生活中的数据
1、把一个大于10的数表示成 的形式(其中1≤a<10,n为正整数),就叫 。
(从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。)
2、扇形统计图的性质:各扇形分别代表每部分在 ;各扇形占整个圆的百分比之和为 。
3、 (1) 扇形圆心角的度数= X该部分占总体的 ;
(2) 每部分占总体的百分比=部分数量÷ =该部分所对应圆心角的度数与 的比。
4、制作扇形统计图的步骤是什么?
5、各统计图的特点:
(1)扇形统计图能清楚地表示出 ;
(2)折线统计图能清楚地反映 ;
(3)条形统计图能清楚地表现出 。

第七章 可能性
必然事件:事先能肯定它
确定事件{不可能事件:事先能肯定它一定
事件{不确定事件:事先无法肯定它
1、事情发生的可能性的大小:
机会大的不确定事件不一定发生,机会小的不确定事件也不一定不发生,机会大大小只能说明发生的程度不同。
2、要学会判断事情发生的可能性的大小。
------------------------------------------------------------------------------------------------------------------------数学复习提纲(一)

★扇形统计图:

1. 扇形统计图的意义:用整个圆表示总数,用圆内各个扇形的大小表示各部分占总数的百分数。

2. 扇形统计图的特点:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系。

3. 从统计图中获取信息:综合观察,联系实际解读出统计图反映的情况,并能做简单的分析、判断。

4. 结合统计图解决问题:根据统计图中提供的数据和题中已知条件,应用百分数的知识,解决题中的问题和实际生活中的问题。

★数学广角

1. 鸡兔同笼问题的特点:题中有两个或两个以上未知单量,要求根据两个或两个以上未知量的总数量,求出两个单量或两个以上的单量。

2. 鸡兔同笼问题的解题方法:(1)猜测法(2)假设法:先做出某种假设,根据设想进行推算,如果推出的结果与题意矛盾,再做适当调整,找出正确答案。(3)方程解法:设其中一个量为X,根据等量关系式列出方程。

★位置

1. 列、行的意义:竖排称为列, 横排称为行。

2. 数对的表示:(列、行)

★圆

一、圆的认识

1、 半径:连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。

直径:通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。

2、 圆规画圆的方法:

先把圆规的两脚分开,用直尺定好两脚之间的距离(定半径r)。

再把有针尖的一脚固定在一点上(定圆心O)。

再有铅笔的一脚旋转一周。

3、 圆的特点:

1)圆有无数条直径,也有无数条半径。

2) 同圆或等圆内,所有的直径都相等,所有的半径也都相等。

3) 同圆或等圆内,直径是半径的2倍,半径是直径的一半,即:d=2r r=d/2

4) 圆有无数条对称轴,每一条直径所在的直线,都是它的对称轴。

5) 圆的位置由圆心决定,大小由半径/直径决定。

6)两端都在圆上的线段中,直径最长。

二、圆的周长(化曲为直的推导过程)

1、圆周率(π):任意一个圆的周长和它的直径的比值都是一个固定的数,这个比就叫圆周率。

1)圆周率(π)

2)π是无限不循环小数

2、三组公式

d=2r

d=c/π

r=d/2

r=c/2π

c=πd

c=2πr

三、圆的面积(化圆为方的推导过程要了解,书上的例题要看看。)

S=π×r的平方

S环形=π×R的平方—π×r的平方

★百分数

一、百分数的意义

表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫做百分比和百分率。

二、百分数与分数、小数的互化

1.小数变百分数:将小数的小数点向右移动2位(分子×100)。同时在后面加上“%”(分母×100)。

百分数变小数:去“%”,同时小数点左移2位

2、分数变百分数:

方法一:先把分数转化成小数(即分子除以分母),再把小数转化成百分数。除不尽时,保留三位小数。

方法二:分母是100的因数(如5,10,20,25,50)时,直接把分数转化成分母是100的分数,再写成百分数。

百分数变分数:先写成分母是100的分数,再化简。

3. 百分数和分数的不同

分数既可以表示两个数之间的关系,也可以表示一个具体的数,而百分数只能表示两个数之间的关系。

四、常用的的求“率”的公式:

(课堂上已经做了笔记要求记熟,并会举一反三说出相应的数量关系式。如:合格率=合格的人数÷总人数×100% 合格的人数=总人数×合格率

总人数=合格的人数÷合格率)

数学复习提纲(二)

★百分数(补充添加)

1.求一个数比另一个数多或少百分之几的问题:

(1)甲比乙多百分之几的问题解题规律:

(甲—乙)÷乙=百分之几 或 甲÷乙—1=百分之几

(2)求乙比甲少百分之几的问题的解题规律:

(甲—乙)÷甲=百分之几 或 1—乙÷甲=百分之几

2. (1)求一个数的百分之几是多少的应用题的规律:

一个数(单位“1” )×百分率=部分量

(2)已知一个数的百分之几是多少,求这个数的应用题的解题规律:

部分量÷百分率=一个数(单位“1”)

这里的部分量与百分率要相对应。

3. 折扣:商品按原定价格的百分之几出售,叫折扣。

4. 纳税:

(1)应纳税额:就是缴纳的税款。

(2)税率:应纳税额与各种收入的比率叫税率。

(3)应纳税额=总收入×税率

5. 利率

三个概念:本金、利息、利率

利息=本金×利率×时间

★分数乘法

1、 分数乘整数的意义与计算法则:分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算;分数乘整数用分数的分子和整数相乘的积作分子,分母不变。

2、 一个数乘分数的意义与计算法则:一个数与分数相乘,可以看作是求这个数的 几分之几是多少。一个数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

3、 分数乘加、乘减混合运算的运算顺序和整数的运算顺序相同。

4、 整数乘法的运算定律(乘法交换律、结合律、分配律)对分数乘法同样适用。运用乘法的运算定律可以使一些计算简便。

5、 求一个数的几分之几是多少的问题的解题规律:

一个数(单位“1”)×几分之几=部分量(与几分之几相对应的量)。

6、 倒数的意义:乘积是1的 两个数互为倒数。

7、 求一个数(0除外)的倒数的方法:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

★分数除法

1、 分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

2、 分数除法的计算法则:

甲数除以乙数(0除外),等于甲数乘乙数的倒数。

(1) 分数除以整数(0除外)、等于分数乘这个整数的倒数。

(2) 一个数除以分数,等于这个数乘以分数的倒数。

3、 已知一个数的几分之几是多少,求这个数的问题的解题规律:

部分量÷几分之几=一个数(单位“1”)

(这里的部分量与几分之几要相对应。)

4、 比的意义:两个数相除又叫做两个数的比。

5、 比、分数、除法三者之间的关系:

(1)内在联系:a:b=a÷b=a/b(b≠0)

(2)区别:

①意义不同:比是表示两个数(或量)的一种关系,除法是一种运算,分数是一个数;

②读法不同;

③表示方法不同;

④结果表示不同。

6、 比的基本性质:比的前项和后项同时乘或者同时除以相同的数(0除外),比值不变。

7、 化简比的意义:把两个数的比化成最简单的整数比。应用比的基本性质可以把比化成最简单的整数比。

8、 按比例分配应用题的解题规律:

(1) 按比例分配解法,先求出份数,再求各部分量占总数的几分之几,最后用总数(单位i“1”)乘各部分量占总数的几分之几求出各部分量。

(2) 归一解法,先求出每份是多少,再用每份数乘各部分量所占的份数,求出各部分量。

参考资料:不知道符不符合,呵呵

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
苹果手机微信怎么换漂亮字体(苹果手机微信怎么换行输入) 有什么好用的app转换字体 手写转文字的软件 erp可以看评论地址吗 淘宝评论url是什么意思? 揭秘:码牌支付风控升级,背后真相揭秘 电脑电视直播软件哪个好用什么软件好电脑看电视直播 潼南子同街学区是哪些 三极管BU406价格和参数? 火锅料放在冰柜忘了插电一个星期给会坏了吗 火锅的设备有哪些 b推服务是怎么做的 说出你最怀念小时候玩的什么游戏。 比如捉迷藏 b推具体是什么呀 给女儿取名糖宝好吗 CF怎么甩炮 怎么样能练好歌 三星手机收藏的微信视频在什么位置存储 CF怎么甩炮? 怎么样才能把歌练好 新版神将世界在哪买那些摔炮? 自己曾经玩过和最喜欢玩的游戏是什么?同学们玩过的游戏又有哪些? —————————————————— 网贷外包催收怎么知道哪个平台 07698374是哪个网贷催收? 172开头的哪个网贷催收 0728是哪家网贷催收 我的圣诞节 英语作文 小学生的 急急急急急急急急急急急急急急急急急急急急急急急急急急急急急急急 0737_6789739是哪里的网贷协商电话? 英语作文:my christmas day 关于圣诞节的六年级英语作文 英语作文:我的圣诞节 1.没有A就不会有B,是B推A吗? 2.A来源于B,是怎么的呢? 王者之武好还是炫金黑龙好,m4我觉得黑龙系列最好 六年级寒假日记,前两天的 怎样练好唱歌? “糖宝”结婚四年从未秀恩爱,为何一直藏着掖着? 王者黑龙名叫王者之武,自我感觉和黑龙没什么区别 逻辑推理中,要想A必须B,是A推B还是B推A?A的原因是B。 B是A的基础。A的基础是B这个又怎么推? 《坦克世界》 甩炮及甩顶盖技能是怎么练成 逻辑推理中,要想A必须B,是A推B还是B推A m4a1黑龙如何合成变成王者之武? 求初一上册数学练习题及答案急急急! 春节假期,你最喜欢的娱乐活动是什么? 三星手机中微信浏览过的视频在哪里删除? 王者之势和黑骑士弹道一样吗 糖宝和天天那个做乳名更好听?男孩 男生A把我认识的男生B往我身上推,啥意思啊?? 宝贝坦克如何甩炮角度需要变化吗?? 穿越火线枪战王者黑骑士和黑龙哪个好 CF手游黑龙黑 暖暖和糖宝、糖糖哪个好听?女孩小名 a推b,有的b推c