问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

函数得左右极限怎么理解。可否讲解后举一个例子

发布网友 发布时间:2022-04-29 18:11

我来回答

5个回答

热心网友 时间:2023-10-29 09:06

函数的左极限:从一个地方(比如坐标轴)的左侧无限趋向于常数a所取的极限值(x→a-),或者从0无限趋向于这个地方的左侧所取的极限值(x→∞-),则称为函数的左极限。

函数的右极限:从一个地方(比如坐标轴)的右侧无限趋向于常数a所取的极限值(x→a+),或者从0无限趋向于这个地方的右侧所取的极限值(x→∞+),则称为函数的右极限。

如e^(1/x),判断它在x→0时是否存在极限。

当x→0-时,lim[x→0-]e^(1/x)=0;

当x→0+时,lim[x→0+]e^(1/x)=∞;

此函数左右极限不相等,所以它关于x→0的极限不存在。

扩展资料:

左极限与右极限只要有其中有一个极限不存在,则函数在该点极限不存在。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。

在运用以上两条去求函数的极限时尤需注意以下关键之点。

一是先要用单调有界定理证明收敛,然后再求极限值。

二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数的极限值。

洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。

洛必达法则:符合形式的分式的极限等于分式的分子分母同时求导。

参考资料来源:百度百科——右极限

参考资料来源:百度百科——左极限

热心网友 时间:2023-10-29 09:06

函数的左极限:从一个地方(比如坐标轴)的左侧无限趋向于常数a所取的极限值(x→a-),或者从0无限趋向于这个地方的左侧所取的极限值(x→∞-),则称为函数的左极限。
函数的右极限:从一个地方(比如坐标轴)的右侧无限趋向于常数a所取的极限值(x→a+),或者从0无限趋向于这个地方的右侧所取的极限值(x→∞+),则称为函数的右极限。

如果函数关于某处的极限存在,则它的左右极限必定存在并且相等。
如果函数关于某处的左右极限不相等,则它在这个地方不存在极限。

如e^(1/x),判断它在x→0时是否存在极限。

当x→0-时,lim[x→0-]e^(1/x)=0;
当x→0+时,lim[x→0+]e^(1/x)=∞;
此函数左右极限不相等,所以它关于x→0的极限不存在。

热心网友 时间:2023-10-29 09:07

函数的左极限:从一个地方(比如坐标轴)的左侧无限趋向于常数a所取的极限值(x→a-),或者从0无限趋向于这个地方的左侧所取的极限值(x→∞-),则称为函数的左极限。

函数的右极限:从一个地方(比如坐标轴)的右侧无限趋向于常数a所取的极限值(x→a+),或者从0无限趋向于这个地方的右侧所取的极限值(x→∞+),则称为函数的右极限。

热心网友 时间:2023-10-29 09:07

左极限指自变量从左边趋近某个数X0时函数所得的极限值,右极限指自变量从右边趋近X0时,函数所得的极限。
例:左极限,F(x)=x//x/=-1 (x→0-).
右极限,F(x)=x//x/=1(x→0+).

热心网友 时间:2023-10-29 09:08

X→0-时,lim也为无穷

热心网友 时间:2023-10-29 09:06

函数的左极限:从一个地方(比如坐标轴)的左侧无限趋向于常数a所取的极限值(x→a-),或者从0无限趋向于这个地方的左侧所取的极限值(x→∞-),则称为函数的左极限。

函数的右极限:从一个地方(比如坐标轴)的右侧无限趋向于常数a所取的极限值(x→a+),或者从0无限趋向于这个地方的右侧所取的极限值(x→∞+),则称为函数的右极限。

如e^(1/x),判断它在x→0时是否存在极限。

当x→0-时,lim[x→0-]e^(1/x)=0;

当x→0+时,lim[x→0+]e^(1/x)=∞;

此函数左右极限不相等,所以它关于x→0的极限不存在。

扩展资料:

左极限与右极限只要有其中有一个极限不存在,则函数在该点极限不存在。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。

在运用以上两条去求函数的极限时尤需注意以下关键之点。

一是先要用单调有界定理证明收敛,然后再求极限值。

二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数的极限值。

洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。

洛必达法则:符合形式的分式的极限等于分式的分子分母同时求导。

参考资料来源:百度百科——右极限

参考资料来源:百度百科——左极限

热心网友 时间:2023-10-29 09:06

函数的左极限:从一个地方(比如坐标轴)的左侧无限趋向于常数a所取的极限值(x→a-),或者从0无限趋向于这个地方的左侧所取的极限值(x→∞-),则称为函数的左极限。
函数的右极限:从一个地方(比如坐标轴)的右侧无限趋向于常数a所取的极限值(x→a+),或者从0无限趋向于这个地方的右侧所取的极限值(x→∞+),则称为函数的右极限。

如果函数关于某处的极限存在,则它的左右极限必定存在并且相等。
如果函数关于某处的左右极限不相等,则它在这个地方不存在极限。

如e^(1/x),判断它在x→0时是否存在极限。

当x→0-时,lim[x→0-]e^(1/x)=0;
当x→0+时,lim[x→0+]e^(1/x)=∞;
此函数左右极限不相等,所以它关于x→0的极限不存在。

热心网友 时间:2023-10-29 09:06

函数的左极限:从一个地方(比如坐标轴)的左侧无限趋向于常数a所取的极限值(x→a-),或者从0无限趋向于这个地方的左侧所取的极限值(x→∞-),则称为函数的左极限。

函数的右极限:从一个地方(比如坐标轴)的右侧无限趋向于常数a所取的极限值(x→a+),或者从0无限趋向于这个地方的右侧所取的极限值(x→∞+),则称为函数的右极限。

如e^(1/x),判断它在x→0时是否存在极限。

当x→0-时,lim[x→0-]e^(1/x)=0;

当x→0+时,lim[x→0+]e^(1/x)=∞;

此函数左右极限不相等,所以它关于x→0的极限不存在。

扩展资料:

左极限与右极限只要有其中有一个极限不存在,则函数在该点极限不存在。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。

在运用以上两条去求函数的极限时尤需注意以下关键之点。

一是先要用单调有界定理证明收敛,然后再求极限值。

二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数的极限值。

洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。

洛必达法则:符合形式的分式的极限等于分式的分子分母同时求导。

参考资料来源:百度百科——右极限

参考资料来源:百度百科——左极限

热心网友 时间:2023-10-29 09:06

函数的左极限:从一个地方(比如坐标轴)的左侧无限趋向于常数a所取的极限值(x→a-),或者从0无限趋向于这个地方的左侧所取的极限值(x→∞-),则称为函数的左极限。

函数的右极限:从一个地方(比如坐标轴)的右侧无限趋向于常数a所取的极限值(x→a+),或者从0无限趋向于这个地方的右侧所取的极限值(x→∞+),则称为函数的右极限。

如e^(1/x),判断它在x→0时是否存在极限。

当x→0-时,lim[x→0-]e^(1/x)=0;

当x→0+时,lim[x→0+]e^(1/x)=∞;

此函数左右极限不相等,所以它关于x→0的极限不存在。

扩展资料:

左极限与右极限只要有其中有一个极限不存在,则函数在该点极限不存在。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。

在运用以上两条去求函数的极限时尤需注意以下关键之点。

一是先要用单调有界定理证明收敛,然后再求极限值。

二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数的极限值。

洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。

洛必达法则:符合形式的分式的极限等于分式的分子分母同时求导。

参考资料来源:百度百科——右极限

参考资料来源:百度百科——左极限

热心网友 时间:2023-10-29 09:06

函数的左极限:从一个地方(比如坐标轴)的左侧无限趋向于常数a所取的极限值(x→a-),或者从0无限趋向于这个地方的左侧所取的极限值(x→∞-),则称为函数的左极限。
函数的右极限:从一个地方(比如坐标轴)的右侧无限趋向于常数a所取的极限值(x→a+),或者从0无限趋向于这个地方的右侧所取的极限值(x→∞+),则称为函数的右极限。

如果函数关于某处的极限存在,则它的左右极限必定存在并且相等。
如果函数关于某处的左右极限不相等,则它在这个地方不存在极限。

如e^(1/x),判断它在x→0时是否存在极限。

当x→0-时,lim[x→0-]e^(1/x)=0;
当x→0+时,lim[x→0+]e^(1/x)=∞;
此函数左右极限不相等,所以它关于x→0的极限不存在。

热心网友 时间:2023-10-29 09:07

函数的左极限:从一个地方(比如坐标轴)的左侧无限趋向于常数a所取的极限值(x→a-),或者从0无限趋向于这个地方的左侧所取的极限值(x→∞-),则称为函数的左极限。

函数的右极限:从一个地方(比如坐标轴)的右侧无限趋向于常数a所取的极限值(x→a+),或者从0无限趋向于这个地方的右侧所取的极限值(x→∞+),则称为函数的右极限。

热心网友 时间:2023-10-29 09:07

左极限指自变量从左边趋近某个数X0时函数所得的极限值,右极限指自变量从右边趋近X0时,函数所得的极限。
例:左极限,F(x)=x//x/=-1 (x→0-).
右极限,F(x)=x//x/=1(x→0+).

热心网友 时间:2023-10-29 09:08

X→0-时,lim也为无穷

热心网友 时间:2023-10-29 09:06

函数的左极限:从一个地方(比如坐标轴)的左侧无限趋向于常数a所取的极限值(x→a-),或者从0无限趋向于这个地方的左侧所取的极限值(x→∞-),则称为函数的左极限。
函数的右极限:从一个地方(比如坐标轴)的右侧无限趋向于常数a所取的极限值(x→a+),或者从0无限趋向于这个地方的右侧所取的极限值(x→∞+),则称为函数的右极限。

如果函数关于某处的极限存在,则它的左右极限必定存在并且相等。
如果函数关于某处的左右极限不相等,则它在这个地方不存在极限。

如e^(1/x),判断它在x→0时是否存在极限。

当x→0-时,lim[x→0-]e^(1/x)=0;
当x→0+时,lim[x→0+]e^(1/x)=∞;
此函数左右极限不相等,所以它关于x→0的极限不存在。

热心网友 时间:2023-10-29 09:07

函数的左极限:从一个地方(比如坐标轴)的左侧无限趋向于常数a所取的极限值(x→a-),或者从0无限趋向于这个地方的左侧所取的极限值(x→∞-),则称为函数的左极限。

函数的右极限:从一个地方(比如坐标轴)的右侧无限趋向于常数a所取的极限值(x→a+),或者从0无限趋向于这个地方的右侧所取的极限值(x→∞+),则称为函数的右极限。

热心网友 时间:2023-10-29 09:07

函数的左极限:从一个地方(比如坐标轴)的左侧无限趋向于常数a所取的极限值(x→a-),或者从0无限趋向于这个地方的左侧所取的极限值(x→∞-),则称为函数的左极限。

函数的右极限:从一个地方(比如坐标轴)的右侧无限趋向于常数a所取的极限值(x→a+),或者从0无限趋向于这个地方的右侧所取的极限值(x→∞+),则称为函数的右极限。

热心网友 时间:2023-10-29 09:07

左极限指自变量从左边趋近某个数X0时函数所得的极限值,右极限指自变量从右边趋近X0时,函数所得的极限。
例:左极限,F(x)=x//x/=-1 (x→0-).
右极限,F(x)=x//x/=1(x→0+).

热心网友 时间:2023-10-29 09:08

X→0-时,lim也为无穷

热心网友 时间:2023-10-29 09:07

左极限指自变量从左边趋近某个数X0时函数所得的极限值,右极限指自变量从右边趋近X0时,函数所得的极限。
例:左极限,F(x)=x//x/=-1 (x→0-).
右极限,F(x)=x//x/=1(x→0+).

热心网友 时间:2023-10-29 09:08

X→0-时,lim也为无穷
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
网络宣传文案心碎,句句获赞! 关于朋友圈上万人点赞转发的说说 人生看的很透彻的经典句子 超现实超扎心的说说大全2019最新 心脏血管堵塞吃什么食物 投资理财有什么前景 pp理财什么情况 P2P理财行业的前景如何? 中国目前的财富管理现状是什么情况? 呼吸皮沙发寿命多久 “皮沙发的呼吸寿命” 呼吸皮沙发寿命多久 收敛数列保序性证明过程中的问题 目录的符号...怎么统一 如果数列极限存在那么函数极限不一定存在,这句话怎么理解呢? 函数极限的定义怎么理解? 出境为什么要买海外保险 函数的极限与数列的极限有何联系与区别 函数极限怎么理解? 《道德经 》主要想表达和告诉人们什么? 如何购买海外保险 牛高汤熬煮多长时间? 道德经的中心思想是什么 看到你的关于高数题目的解答,觉得很好,我想问一下有没有“函数极限在无穷远点处的局部有界性/保号性” 牛大骨炖几个小时合适 意大利签证中的海外保险 求助 大学数列极限保序性,我哪里错了? 极限保序性是什么,等于保号性吗 国内不允许海外保险 什么是极限的保序性? 收敛数列性质的保序性是什么呢? 国外的保险公司好还是国内的保险公司好 分段函数可以用保序性吗 目录的这些省略号如何修改统一吖? 数列极限和函数极限的概念? 极限怎么求啊,每次看到极限的问题都没思路=== 自变量趋于无穷大时函数的极限是什么? 函数极限的保号性定理到底是什么意思该怎么理解,谁能用通俗的话给我讲一讲 觉得自己签名很丑,有什么办法练习吗 怎样能很快的练好字和签名 WORD编辑目录,后面的连接符号怎么设置的啊 ?请教! 重天教您如何练习签名 练字方法练自己名字签字毕岸洪? 内蒙古省考公务员能如期考吗? 怎样练字把张天权练成艺术签名? oppor15怎么分屏王者荣耀? 怎样练字可以练得写好看点特别是自己的名字 怎样练字最好 签字笔练字 自己练字 一版一寸照片是几张 四寸的照片一版几张 一版一寸的照片是多少个 二寸照片一版是多少张