发布网友 发布时间:2023-10-14 06:14
共5个回答
热心网友 时间:2024-12-04 05:22
1675年莱布尼兹分别引入「dx」及「dy」以表示x和y的微分(differentials),始见于他在1684年出版的书中,这符号一直沿用至今。
微分符号d取英文differential,differentiation的首个字母(difference有差距,差额的意思),其中与微分概念及符号d相关的英文单词有divide,decrease,delta等.另外,符号D又叫微分算子。
扩展资料:
一、微积分产生
到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。
第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。
二、积分相关
1、定积分和不定积分
积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,定积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。
一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。
其中:[F(x)+C]'=f(x)
一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值。
定积分和不定积分的定义迥然不同,定积分是求图形的面积,即是求微元元素的累加和,而不定积分则是求其原函数,而牛顿和莱布尼茨则使两者产生了紧密的联系(详见牛顿-莱布尼茨公式)。
2、常微分方程与偏微分方程
含自变量、未知函数和它的微商(或偏微商)的方程称为常(或偏)微分方程。未知函数为一元函数的微分方程,称为常微分方程。未知函数为多元函,从而出现多元函数的偏导数的方程,称为偏微分方程。
参考资料来源:百度百科-微分符号
参考资料来源:百度百科-微积分
热心网友 时间:2024-12-04 05:22
解答:热心网友 时间:2024-12-04 05:23
d表示极小的变化量热心网友 时间:2024-12-04 05:23
是天才的莱布尼茨提出的微分符号,比牛顿也强哦;它作用在因变量x时表示x的微小增量Δx;作用在f(x)上表示f(x+Δx)-f(x). 其中Δx是无限趋近于0的量热心网友 时间:2024-12-04 05:24
应该是由Δ演变来的,为了便于书写。表示数值的微小增量。