用十字交叉法怎么解方程
发布网友
发布时间:2022-04-29 18:26
我来回答
共2个回答
热心网友
时间:2022-06-19 00:58
解二元一次方程“十字交叉法”
https://wenku.baidu.com/view/fa50f44bfe4733687e21aa56.html
热心网友
时间:2022-06-19 00:58
例1 把2x2-7x+3分解因式.
分析:先分解二次项系数,分别写在十字交叉线的左上角和左下解,再分解常数项,分
别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
分解二次项系数(只取正因数):
2=1×2=2×1;
分解常数项:
3=1×3=1×3==(-3)×(-1)=(-1)×(-3).
用画十字交叉线方法表示下列四种情况:
1 1
2 3
1×3+2×1
=5
1 3
2 1
1×1+2×3
=7
1 -1
2 -3
1×(-3)+2×(-1)
=-5
1 -3
2 -1
1×(-1)+2×(-3)
=-7
经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
解 2x2-7x+3=(x-3)(2x-1).
一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:
a1 c1
a2 c2
a1a2+a2c1
按斜线交叉相乘,再相加,得到a1a2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
ax2+bx+c=(a1x+c1)(a2x+c2).
像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常
叫做十字相乘法.追答例2 把6x2-7x-5分解因式.
分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种
2 1
3 -5
2×(-5)+3×1=-7
是正确的,因此原多项式可以用十字相乘法分解因式.
解 6x2-7x-5=(2x+1)(3x-5).
指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.
对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x2+2x-15分解因式,十字相乘法是
1 -3
1 5
1×5+1×(-3)=2
所以x2+2x-15=(x-3)(x+5).