分层抽样要理解的知识点,与常考的例题,我想快速学会分层抽样,帮帮快,谢谢
发布网友
发布时间:2022-04-28 17:46
我来回答
共1个回答
热心网友
时间:2023-09-13 13:12
分层抽样 1、知识与技能:
(1)正确理解分层抽样的概念;
(2)掌握分层抽样的一般步骤;
(3)区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法 进行抽样。
2、过程与方法:通过对现实生活中实际问题进行分层抽样,感知应用数学 知识解决实际问题的方法。
3、情感态度与价值观:通过对统计学知识的研究,感知数学知识中“估计 与“精确”性的矛盾统一,培养学生的辩证唯物主义的世界观与价值观。
4、重点与难点:正确理解分层抽样的定义,灵活应用分层抽样抽取样本, 并恰当的选择三种抽样方法解决现实生活中的抽样问题。
教学设想: 教学设想 【创设情景】 假设某地区有高中生 2400 人,初中生 10900 人,小学生 11000 人,此地 教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的 小学生中抽取 1%的学生进行调查,你认为应当怎样抽取样本? 【探究新知 探究新知】 探究新知 一、分层抽样的定义。 一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例, 从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本, 这种抽样的方法叫分层抽样。 说明】 【说明】分层抽样又称类型抽样,应用分层抽样应遵循以下要求:
(1)分层:将相似的个体归人一类,即为一层,分层要求每层的各个个体 互不交叉,即遵循不重复、不遗漏的原则。
(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机 抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量 的比相等。 二、分层抽样的步骤: (1)分层:按某种特征将总体分成若干部分。
(2)按比例确定每层抽取个体的个数。
(3)各层分别按简单随机抽样的方法抽取。
(4)综合每层抽样,组成样本。
【说明】 (1)分层需遵循不重复、不遗漏的原则。
(2)抽取比例由每层个体占总体的比例确定。
(3)各层抽样按简单随机抽样进行。
探究交流:
(1)分层抽样又称类型抽样,即将相似的个体归入一类(层) ,然后每层抽 取若干个体构成样本,所以分层抽样为保证每个个体等可能入样,必 ( ) 须进行A、每层等可能抽样 B、每层不等可能抽样 C、所有层按同一抽样比等可能抽样
(2)如果采用分层抽样,从个体数为 N 的总体中抽取一个容量为 n 样本,那么每个个体被抽到的可能性为 ( ) A. N 1 B. n 1 C. N n D. N n
点拨: 点拨: (1)保证每个个体等可能入样是简单随机抽样、系统抽样、分层抽 共同的特征,为了保证这一点,分层时用同一抽样比是必不可少 的,故此选 C。
(2)根据每个个体都等可能入样,所以其可能性本容量与总体容量 比,故此题选 C。
知识点 2 简单随机抽样、系统抽样、分层抽样的比较 适 用 类 别 共同点 各自特点 联 系 范 围
(1)抽样过程中每 总体个 简 单 从总体中逐个抽取 个个体被抽到 数较少 随 机 的可能性相等 将总体均分成几部 抽 样 在起始部分 总体个
(2)每次抽出个体 分, 按预先制定的规 样时采用简 数较多 后不再将它放 则在各部分抽取 随机抽样 系 统 回,即不放回 抽 样 总体由 抽样 分层抽样时采 差异明 将总体分成几层, 用简单随机抽 显的几 分 层 分层进行抽取 样或系统抽样 部分组 抽 样 成 【例选精析】 例选精析】
例1、 某高*有 900 人,其中高一年级 300 人,高二年级 200 人,高三年级 400 人,现采用分层抽样抽取容量为 45 的样本,那么高一、高二、高三各 年级抽取的人数分别为 A.15,5,25 B.15,15,15 C.10,5,30 D15,10,20 分析]因为 300:200:400=3:2:4,于是将 45 分成 3:2:4 的三部分。设 [分析 分析 三部分各抽取的个体数分别为 3x,2x,4x,由 3x+2x+4x=45,得 x=5,故 高一、高二、高三各年级抽取的人数分别为 15,10,20,故选 D。
例 2:一个地区共有 5 个乡镇,人口 3 万人,其中人口比例为 3:2:5:2:3, 从 3 万人中抽取一个 300 人的样本,分析某种疾病的发病率,已知这种疾 病与不同的地理位置及水土有关, 问应采取什么样的方法?并写出具体过 程。
[分析 分析]采用分层抽样的方法。 分析 解:因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明 显,因而采用分层抽样的方法,具体过程如下:
(1)将 3 万人分为 5 层,其中一个乡镇为一层。
(2)按照样本容量的比例随机抽取各乡镇应抽取的样本。 300×3/15=60 (人) 300×2/15=100 , (人) 300×2/15=40 , (人) 300×2/15=60 , (人) ,因此各乡镇抽取人数分别为 60 人、40 人、100 人、40 人、60 人。 (3)将 300 人组到一起,即得到一个样本。