怎么证明三角形的中位线定理
发布网友
发布时间:2022-04-28 18:39
我来回答
共3个回答
热心网友
时间:2022-06-22 20:56
概念
1.中位线概念:
(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。
(2)梯形中位线定义:连接梯形两腰中点的线段叫做梯形的中位线。
注意
(1)要把三角形的中位线与三角形的中线区分开.三角形中线是连接一顶点和它的对边中点的
线段,而三角形中位线是连接三角形两边中点的线段。
(2)梯形的中位线是连接两腰中点的线段而不是连结两底中点的线段。
(3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时梯形的中位线就变成三角形的中位线。
编辑本段定理
2.中位线定理:
(1)三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.
(2)梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.
编辑本段例题
已知:如图,DE是△ABC的中位线
求证:DE∥BC
DE=1/2
BC
证明:延长DE至F,使EF=DE
连接CF
∵AE=CE
∴∠AED=∠CEF
∴△ADE≌△CFE
∴AD=CF
∠ADE=∠F
∴BD∥CF
∵AD=BD
∴BD=CF
∴四边形BCFD是平行四边形
∴DF∥BC
DF=BC
∴DE∥BC
DE=1/2
BC
打的累死了
热心网友
时间:2022-06-22 20:57
三角形中位线定理
定理
三角形的中位线平行于第三边,并且等于它的一半 。
证明
如图,已知△ABC中,D,E分别是AB,AC两边中点。
求证DE平行且等于1/2BC
法一:
过C作AB的平行线交DE的延长线于F点。
∵CF‖AD
∴∠A=ACF
∵AE=CE、∠AED=∠CEF
∴△ADE≌△CFE
∴DE=EF=DF/2、AD=CF
∵AD=BD
∴BD=CF
∴BCFD是平行四边形
∴DF‖BC且DF=BC
∴DE=BC/2
∴三角形的中位线定理成立.
法二:
∵D,E分别是AB,AC两边中点
∴AD=AB/2 AE=AC/2
∴AD/AE=AB/AC
又∵∠A=∠A
∴△ADE∽△ABC
∴DE/BC=AD/AB=1/2
∴∠ADE=∠ABC
∴DF‖BC且DE=BC/2
三角形中位线定理的逆定理
逆定理一:
如图DE//BC,DE=1/2BC,则D是AB的中点,E是AC的中点。
逆定理二:
如图D是AB的中点,DE//BC,则E是AC的中点,DE=1/2BC
逆定理三:
如图D是AB的中点,DE=1/2BC,则E是AC的中点,DE//BC
热心网友
时间:2022-06-22 20:57
已知△abc中,d,e分别是ab,ac两边中点。
求证de平行且等于1/2bc
法一:
过c作ab的平行线交de的延长线于f点。
∵cf∥ad
∴∠a=acf
∵ae=ce、∠aed=∠cef
∴△ade≌△cfe
∴de=ef=df/2、ad=cf
∵ad=bd
∴bd=cf
∴bcfd是平行四边形
∴df∥bc且df=bc
∴de=bc/2
∴三角形的中位线定理成立.
法二:
∵d,e分别是ab,ac两边中点
∴ad=ab/2
ae=ac/2
∴ad/ae=ab/ac
又∵∠a=∠a
∴△ade∽△abc
∴de/bc=ad/ab=1/2
∴∠ade=∠abc
∴df∥bc且de=bc/2