发布网友 发布时间:2022-04-28 16:18
共1个回答
热心网友 时间:2022-06-19 16:25
原子吸收光谱分析法与原子发射光谱分析法相比,尽管干扰较少并易于克服,但在实际工作中干扰效应仍然经常发生,而且有时表现得很严重,因此了解干扰效应的类型、本质及其抑制方法很重要。原子吸收光谱中的干扰效应一般可分为四类:物理干扰、化学干扰、电离干扰和光谱干扰。
1、物理干扰及其抑制
物理干扰是由于试液和标准溶液的物理性质的差异,引起进样速度、进样量、雾化效率、原子化效率的变化所产生的干扰。削除和抑制物理干扰常采用如下方法:
(1) 配制与待测试样溶液相似组成的标准溶液,并在相同条件下进行测定。如果试样组成不详,采用标准加入法可以削除物理干扰。
(2) 尽可能避免使用粘度大的硫酸、磷酸来处理试样;当试液浓度较高时,适当稀释试液也可以抑制物理干扰。
2、化学干扰及其抑制
化学干扰是由于待测元素与共存组分发生了化学反反应,生成了难挥发或难解离的化合物,使基态原子数目减少所产生的干扰。化学干扰是原子吸收光谱分析中的主要干扰。这种干扰具有选择性,它对试样中各种元素的影响各不相同。影响化学干扰的因素很多,但主要是由被测定元素和共存元素的性质起决定性作用,另外,还与火焰的类型、火焰的性质等有关系。
在火焰及石墨炉原子化过程中,化学干扰的机理很复杂,消除或抑制其化学干扰应该根据具体情况采取以下具体措置措施:
(1) 提高火焰温度适当提高火焰温度使难挥发、难解离是化合物较完全基态原子化。
(2) 加入稀释剂 加入释放剂与干扰元素生成更稳定或更难挥发的化合物,从而使被测定元素从含有干扰元素的化合物中释放出来。
(3) 加入保护剂 保护剂多数是有机络合物。它与被测定元素或干扰元素形成稳定的络合物,避免待测定元素与干扰元素生成难挥发化合物。
(4) 加入基本改进剂石墨炉原子吸收光谱分析中,加入某些化学试剂于试液或石墨管中改变机体或被测定元素化合物的热稳定性,避免了化学干扰,这些化学试剂称为基体改进剂。
(5) 化学分离法 应用化学方法将待测定元素与干扰元素分离,不仅可以消除基体元素的干扰,还可以富集待测定元素。
3、电离干扰及其抑制
某些易电离元素在火焰中产生电离,使基态原子数减少,降低了元素测定的灵敏度,这种干扰称为电离干扰。
采用低温火焰或在试液中加入过量的更易电离的元素化合物(消电离剂),能够有效的抑制待测元素的电离。常用的消电离剂有CsCl、KCl、NaCl等。
4、光谱干扰及其抑制
原子吸收光谱分析中的光谱干扰主要有谱线干扰和背景干扰两种。
(1)谱线干扰及其抑制
谱线干扰是指单色器光谱通带内除了元素吸收线外,还进入了发射线的邻近线或其它吸收线,使分析方法的灵敏度和准确度下降。发射线的邻近线的干扰主要是指空心阴极灯的元素、杂质或载气元素的发射线与待测元素共振吸收线的重叠干扰;其它吸收线的干扰主要是指试样*存元素吸收线与待测定元素共振线的重叠干扰。
谱线干扰的抑制通常是减小单色器的光谱通带宽度即减小狭缝宽度,提高仪器的分辨率,使元素的共振吸收线与干扰曲线完全分开。根据具体情况还可采用以下方法抑制光谱干扰,如降低灯电流,选择无干扰的其它吸收线,选用高纯度单元素的空心阴极灯,分离共存的干扰元素等方法。
(2)背景干扰和抑制
1. 背景干扰和抑制 原子吸收光谱分析中的背景干扰主要是指原子化过程中产生的分子吸收和固体微粒产生的光散射产生的干扰效应。背景干扰往往使吸光度增大,产生正误差。
2. 光谱背景干扰的抑制和校正
a.光谱背景干扰的抑制 在实际工作中,多采用改变火焰类型、燃助比和调节火焰观测区高度来抑制分子吸收干扰;在石墨炉原子吸收光谱分析中,常选用适当基体改进剂,采用选择性挥发来抑制分子吸收的干扰.
b.光谱背景的校正 在原子光谱分析中,校正背景的方法有仪器调零吸收法、邻近线校正背景法、氘灯校正背景法和塞曼效应校正背景法。