发布网友 发布时间:2022-04-28 16:26
共3个回答
热心网友 时间:2022-06-19 17:13
^只能是x→0+,极限是1
解:
lim(x→0+)(x^x)
=lim(x→0+) e^ln(x^x)
=lim(x→0+) e^(xlnx)
=e^lim(x→0+) (xlnx)
=e^0
=1
扩展资料:
N的相应性 一般来说,N随ε的变小而变大,因此常把N写作N(ε),以强调N对ε的变化而变化的依赖性。但这并不意味着N是由ε唯一确定的:(比如若n>N使|xn-a|<ε成立,那么显然n>N+1、n>2N等也使|xn-a|<ε成立)。重要的是N的存在性,而不在于其值的大小。
参考资料来源:百度百科-极限
热心网友 时间:2022-06-19 17:13
只能是x→0+,极限是1
解过程:
lim(x→0+)(x^x)
=lim(x→0+) e^ln(x^x)
=lim(x→0+) e^(xlnx)
=e^lim(x→0+) (xlnx)
=e^0
=1
扩展资料:
设{xn} 是一个数列,如果对任意ε>0,存在N∈Z*,只要 n 满足 n > N,则对于任意正整数p,都有|xn+p-xn|<ε,这样的数列{xn} 便称为柯西数列。这种渐进稳定性与收敛性是等价的。即为充分必要条件。
数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列{xn} 收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。
热心网友 时间:2022-06-19 17:14