oracle中的over函数怎么用的,什么意思
发布网友
发布时间:2022-04-28 15:38
我来回答
共3个回答
懂视网
时间:2022-04-08 01:26
--显示各部门员工的工资,并附带显示该部分的最高工资。
SELECT E.DEPTNO,
E.EMPNO,
E.ENAME,
E.SAL,
LAST_VALUE(E.SAL)
OVER(PARTITION BY E.DEPTNO
ORDER BY E.SAL ROWS
--unbounded preceding and unbouned following针对当前所有记录的前一条、后一条记录,也就是表中的所有记录
--unbounded:不受控制的,无限的
--preceding:在...之前
--following:在...之后
BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) MAX_SAL
FROM EMP E;
运行结果:
示例目的:按照deptno分组,然后计算每组值的总和
SELECT EMPNO,
ENAME,
DEPTNO,
SAL,
SUM(SAL) OVER(PARTITION BY DEPTNO ORDER BY ENAME) max_sal
FROM SCOTT.EMP;
运行结果:
示例目的:对各部门进行分组,并附带显示第一行至当前行的汇总
SELECT EMPNO,
ENAME,
DEPTNO,
SAL,
--注意ROWS BETWEEN unbounded preceding AND current row 是指第一行至当前行的汇总
SUM(SAL) OVER(PARTITION BY DEPTNO
ORDER BY ENAME
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) max_sal
FROM SCOTT.EMP;
运行结果:
示例目标:当前行至最后一行的汇总
SELECT EMPNO,
ENAME,
DEPTNO,
SAL,
--注意ROWS BETWEEN current row AND unbounded following 指当前行到最后一行的汇总
SUM(SAL) OVER(PARTITION BY DEPTNO
ORDER BY ENAME
ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) max_sal
FROM SCOTT.EMP;
运行结果:
示例目标:当前行的上一行(rownum-1)到当前行的汇总
SELECT EMPNO,
ENAME,
DEPTNO,
SAL,
--注意ROWS BETWEEN 1 preceding AND current row 是指当前行的上一行(rownum-1)到当前行的汇总
SUM(SAL) OVER(PARTITION BY DEPTNO
ORDER BY ENAME ROWS
BETWEEN 1 PRECEDING AND CURRENT ROW) max_sal
FROM SCOTT.EMP;
运行结果:
示例目标: 当前行的上一行(rownum-1)到当前行的下辆行(rownum+2)的汇总
SELECT EMPNO,
ENAME,
DEPTNO,
SAL,
--注意ROWS BETWEEN 1 preceding AND 1 following 是指当前行的上一行(rownum-1)到当前行的下辆行(rownum+2)的汇总
SUM(SAL) OVER(PARTITION BY DEPTNO
ORDER BY ENAME
ROWS BETWEEN 1 PRECEDING AND 2 FOLLOWING) max_sal
FROM SCOTT.EMP;
运行结果:
Oracle分析函数入门
标签:
热心网友
时间:2022-04-07 22:34
over函数是oracle中的分析函数,分析函数是对行集组进行聚合计算,但是不像普通聚合仗函数那样每组只返回一个值,分析函数可以为每组返回多个值。
使用方法为:over(partition by排 列名1 order by 列名2 ),括号中的两个关键词partition by 和order by 可以只出现一个。over() 前面是一个函数,如果是聚合函数,那么order by 不能一起使用。
扩展资料
在SQL语句中,很多查询语句需要进行GROUP BY分组汇总,但是一旦经过分组,SELECT返回的记录孢数就会减少。为了保留所有原始行记录,并且仍可以进行分组数据分析,分析函数应运而生。
oracle数据库函数,分析函数用于为行定义一个窗口,对一组值进行操作,不需要使用GROUP BY子句对数据进行分组,能够在同一行中同时返回基础行的列和聚合列。
RANK()也为每一组的行生成一个序号,与ROW_NUMBER()不同的是如果按照ORDER BY的排序,如果有相同的值会生成相同的序号,并且接下来的序号是不连序的。例如两个相同的行生成序号3,那么接下来会生成序号。
DENSE_RANK()和RANK()类似,不同的是如果有相同的序号,那么接下来的序号不会间断。也就是说如果两个相同的行生成序号,那么接下来生成的序号还是。
参考资料来源:百度百科-分析函数
热心网友
时间:2022-04-07 23:52
Oracle从8.1.6开始提供分析函数,分析函数用于计算基于组的某种聚合值,它和聚合函数的不同之处是对于每个组返回多行,而聚合函数对于每个组只返回一行。
一、 over函数
over函数指定了分析函数工作的数据窗口的大小,这个数据窗口大小可能会随着行的变化而变化,例如:
over(order by salary)按照salary排序进行累计,order by是个默认的开窗函数
over(partition by deptno) 按照部门分区
over(order by salary range between 50 preceding and 150 following)每行对应的数据窗口是之前行幅度值不超过50,之后行幅度值不超过150的数据记录
over(order by salary rows between 50 perceding and 150 following)前50行,后150行
over(order by salary rows between unbounded preceding and unbounded following)所有行
over(order by salary range between unbounded preceding and unbounded following)所有行
二、 sum函数
功能描述:该函数计算组中表达式的累积和。
SAMPLE:下例计算同一经理下员工的薪水累积值
SELECT manager_id, last_name, salary,
SUM (salary) OVER (PARTITION BY manager_id ORDER BY salary
RANGE UNBOUNDED PRECEDING) l_csum
FROM employees
WHERE manager_id in (101,103,108);
三、 应用实例
1, 测试环境设置
设有销售表t_sales (subcompany,branch,region,customer,sale_qty); 存储客户的销售明细,记录如下所示。
Subcompany Branch Region Customer Sale_qty
北京分公司 北京经营部 片区1 客户1 1
北京分公司 北京经营部 片区1 客户1 1
北京分公司 北京经营部 片区1 客户2 1
北京分公司 北京经营部 片区1 客户2 1
北京分公司 北京经营部 片区2 客户1 1
北京分公司 北京经营部 片区2 客户1 1
北京分公司 北京经营部 片区2 客户2 1
北京分公司 北京经营部 片区2 客户2 1
北京分公司 其他经营部 片区1 客户1 1
北京分公司 其他经营部 片区1 客户1 1
北京分公司 其他经营部 片区1 客户2 1
北京分公司 其他经营部 片区1 客户2 1
北京分公司 其他经营部 片区2 客户1 1
北京分公司 其他经营部 片区2 客户1 1
北京分公司 其他经营部 片区2 客户2 1
北京分公司 其他经营部 片区2 客户2 1
create table t_sales(
subcompany varchar2(40),
branch varchar2(40),
region varchar2(40),
customer varchar2(40),
sale_qty numeric(18,4)
);
comment on table t_sales is '销售表,分析函数测试';
comment on column t_sales.subcompany is '分公司';
comment on column t_sales.branch is '经营部';
comment on column t_sales.region is '片区';
comment on column t_sales.customer is '客户';
comment on column t_sales.sale_qty is '销售数量';
2,问题提出
现在要求给出销售汇总报表,报表中需要提供的数据包括客户汇总,和客户在其上级机构中的销售比例。
Subcompany Branch Region Customer Sale_qty Rate
北京分公司 北京经营部 片区1 客户1 2 50%
北京分公司 北京经营部 片区1 客户2 2 50%
北京分公司 北京经营部 片区1 小计 4 50%
北京分公司 北京经营部 片区2 客户1 2 50%
北京分公司 北京经营部 片区2 客户2 2 50%
北京分公司 北京经营部 片区2 小计 4 50%
北京分公司 北京经营部 小计 小计 8 50%
北京分公司 北京经营部 片区1 客户1 2 50%
北京分公司 北京经营部 片区1 客户2 2 50%
北京分公司 北京经营部 片区1 小计 4 50%
北京分公司 北京经营部 片区2 客户1 2 50%
北京分公司 北京经营部 片区2 客户2 2 50%
北京分公司 北京经营部 片区2 小计 4 50%
北京分公司 北京经营部 小计 小计 8 50%
北京分公司 小计 小计 小计 16 100%
3,解决方案(方案1)
首先我们可以使用oracle对group by 的扩展功能rollup得到如下的聚合汇总结果。
select
subcompany,
branch,
region,
customer,
sum(sale_qty) sale_qty
from t_sales
group by rollup(subcompany,branch,region,customer);
Subcompany Branch Region Customer Sale_qty
北京分公司 北京经营部 片区1 客户1 2
北京分公司 北京经营部 片区1 客户2 2
北京分公司 北京经营部 片区1 4
北京分公司 北京经营部 片区2 客户1 2
北京分公司 北京经营部 片区2 客户2 2
北京分公司 北京经营部 片区2 4
北京分公司 北京经营部 8
北京分公司 其他经营部 片区1 客户1 2
北京分公司 其他经营部 片区1 客户2 2
北京分公司 其他经营部 片区1 4
北京分公司 其他经营部 片区2 客户1 2
北京分公司 其他经营部 片区2 客户2 2
北京分公司 其他经营部 片区2 4
北京分公司 其他经营部 8
北京分公司 16
16
分析上面的临时结果,我们看到:
明细到客户的汇总信息,其除数为当前的sum(sale_qty),被除数应该是到片区的小计信息。
明细到片区的汇总信息,其除数为片区的sum(sale_qty),被除数为聚合到经营部的汇总数据。
。。。
考虑到上述因素,我们可以使用oracle的开窗函数over,将数据定位到我们需要定位的记录。如下代码中,我们利用开窗函数over直接将数据定位到其上次的小计位置。
over(partition by decode(f_branch, 1, null, subcompany), decode(f_branch, 1, null, decode(f_region, 1, null, branch)), decode(f_branch, 1, null, decode(f_region, 1, null, decode(f_customer, 1, null, region))), null)
经整理后的查询语句如下。
select subcompany,
decode(f_branch, 1,subcompany||'(С¼Æ)', branch),
decode(f_region,1,branch||'(С¼Æ)',region),
decode(f_customer,1,region||'(С¼Æ)', customer),
sale_qty,
trim(to_char(round(sale_qty/
sum(sale_qty) over(partition by decode(f_branch, 1, null, subcompany), decode(f_branch, 1, null, decode(f_region, 1, null, branch)), decode(f_branch, 1, null, decode(f_region, 1, null, decode(f_customer, 1, null, region))), null),2) *100,99990.99))
from (select grouping(branch) f_branch,
grouping(region) f_region,
grouping(customer) f_customer,
subcompany,
branch,
region,
customer,
sum(sale_qty) sale_qty
from t_sales
group by subcompany, rollup(branch, region, customer))
Subcompany Branch Region Customer Sale_qty Rate
北京分公司 北京经营部 片区1 客户1 2 50.00
北京分公司 北京经营部 片区1 客户2 2 50.00
北京分公司 北京经营部 片区2 客户1 2 50.00
北京分公司 北京经营部 片区2 客户2 2 50.00
北京分公司 北京经营部 片区1 片区1(小计) 4 50.00
北京分公司 北京经营部 片区2 片区2(小计) 4 50.00
北京分公司 其他经营部 片区1 客户1 2 50.00
北京分公司 其他经营部 片区1 客户2 2 50.00
北京分公司 其他经营部 片区2 客户1 2 50.00
北京分公司 其他经营部 片区2 客户2 2 50.00
北京分公司 其他经营部 片区1 片区1(小计) 4 50.00
北京分公司 其他经营部 片区2 片区2(小计) 4 50.00
北京分公司 北京经营部 北京经营部(小计) (小计) 8 50.00
北京分公司 其他经营部 其他经营部(小计) (小计) 8 50.00
北京分公司 北京分公司(小计) (小计) (小计) 16 100.00
北京分公司 北京经营部 片区1 客户1 2 50.00
4,可能的另外一种解决方式(方案2)
select subcompany,
decode(f_branch, 1,subcompany||'(С¼Æ)', branch),
decode(f_region,1,branch||'(С¼Æ)',region),
decode(f_customer,1,region||'(С¼Æ)', customer),
sale_qty,
/* trim(to_char(round(sale_qty/*/
decode(f_branch+f_region+f_customer,
0,
(sum(sale_qty) over(partition by subcompany,branch,region))/2,
1,
(sum(sale_qty) over(partition by subcompany,branch))/3,
2,
(sum(sale_qty) over(partition by subcompany))/4 ,
sum(sale_qty) over()/4
)/*
,2) *100,99990.99))*/
from (select grouping(branch) f_branch,
grouping(region) f_region,
grouping(customer) f_customer,
subcompany,
branch,
region,
customer,
sum(sale_qty) sale_qty
from t_sales
group by subcompany, rollup(branch, region, customer))
在上面的解决方式中,最大的问题在于开窗函数过大。导致每次计算涉及到的行数过多,影响到执行的速度和效率。并且需要额外的计算处理清除多余叠加进去的数值 。