发布网友 发布时间:2022-04-19 22:57
共5个回答
热心网友 时间:2023-07-02 13:25
“大数据”近几年来可谓蓬勃发展,它不仅是企业趋势,也是一个改变了人类生活的技术创新。大数据对行业用户的重要性也日益突出。掌握数据资产,进行智能化决策,已成为企业脱颖而出的关键。因此,越来越多的企业开始重视大数据战略布局,并重新定义自己的核心竞争力。
国内做大数据的公司依旧分为两类:一类是现在已经有获取大数据能力的公司,如百度、腾讯、阿里巴巴等互联网巨头以及华为、浪潮、中兴等国内领军企业,做大数据致店一叭柒叁耳领一泗贰五零,涵盖了数据采集,数据存储,数据分析,数据可视化以及数据安全等领域;另一类则是初创的大数据公司,他们依赖于大数据工具,针对市场需求,为市场带来创新方案并推动技术发展。其中大部分的大数据应用还是需要第三方公司提供服务。
越来越多的应用涉及到大数据,这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以,大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于此,对大数据进行分析的产品有哪些比较倍受青睐呢?
而在这里面,最耀眼的明星当属Hadoop,Hadoop已被公认为是新一代的大数据处理平台,EMC、IBM、Informatica、Microsoft以及Oracle都纷纷投入了Hadoop的怀抱。对于大数据来说,最重要的还是对于数据的分析,从里面寻找有价值的数据帮助企业作出更好的商业决策。下面,我们就来看看以下十大企业级大数据分析利器吧。
随着数据爆炸式的增长,我们正被各种数据包围着。正确利用大数据将给人们带来极大的便利,但与此同时也给传统的数据分析带来了技术的挑战,虽然我们已经进入大数据时代,但是“大数据”技术还仍处于起步阶段,进一步地开发以完善大数据分析技术仍旧是大数据领域的热点。
在当前的互联网领域,大数据的应用已经十分广泛,尤其以企业为主,企业成为大数据应用的主体。大数据真能改变企业的运作方式吗?答案毋庸置疑是肯定的。随着企业开始利用大数据,我们每天都会看到大数据新的奇妙的应用,帮助人们真正从中获益。大数据的应用已广泛深入我们生活的方方面面,涵盖医疗、交通、金融、教育、体育、零售等各行各业。
可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2. 数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计
学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如
果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3. 预测性分析
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4. 语义引擎
非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。
5.数据质量和数据管理。大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。
大数据的技术
数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取: 关系数据库、NOSQL、SQL等。
基础架构: 云存储、分布式文件存储等。
数据处理:
自然语言处理(NLP,Natural Language
Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理解也称为计算语言学。一方面它是语言信息处理的一个分支,另一方面它是人工智能的核心课题之一。
统计分析:
假设检验、显著性检验、差异分析、相关分析、T检验、 方差分析 、
卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、
因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
数据挖掘:
分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity
grouping or association rules)、聚类(Clustering)、描述和可视化、Description and
Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测 :预测模型、机器学习、建模仿真。
结果呈现: 云计算、标签云、关系图等。
大数据的处理
1. 大数据处理之一:采集
大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的
数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除
此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户
来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间
进行负载均衡和分片的确是需要深入的思考和设计。
2. 大数据处理之二:导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这
些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使
用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
3. 大数据处理之三:统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通
的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于
MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
4. 大数据处理之四:挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数
据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于
统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并
且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。
热心网友 时间:2023-07-02 13:25
在互联网技术高速发展的今天,对企业而言掌握数据资源就掌握了出奇制胜的关键。越来越多的企业开始重视大数据战略布局,并重新定义了自己的核心竞争力。这里给大家整理一些国内大数据公司排名。(不考虑国外的,数据作为未来竞争的核心力量,使用国外的大数据平台是极度不安全的!)热心网友 时间:2023-07-02 13:26
近年来中国的大数据行业蓬勃发展,目前国内的大数据公司可以分为两类,一类是已经获取大数据能力的公司,例如大家耳熟能详的百度、腾讯、阿里等互联网巨头,以及华为、中兴、浪潮等国内技术型领军企业。另一类是初创型大数据企业,他们具有自主研发的大数据系统,针对行业和市场的需求,为企业提供多元化的服务。热心网友 时间:2023-07-02 13:27
腾讯、阿里、百度国内三大巨头公司都有大数据业务,比如腾讯大数据平台、阿里云等;
还有各种BI数据平台,能提供数据解决方案的,也能提供比较好用的数据功能,有思迈特等传统BI,有BDP商业数据平台等轻型敏捷BI;
数据可视化工具:国外有tableau等可视化软件,国内有BDP个人版、大数据魔镜等;
还有各行各业的专业数据平台,比如金融有万得等等;
热心网友 时间:2023-07-02 13:27
目前国内还没有专注大数据的大数据类型公司,要说比较好的大数据相关的职业,大公司肯定是比较好的,像腾讯、百度、网易、京东、阿里巴巴等,或者银行类的大数据分析部门,待遇都很不错,具体就得看你的造化和实力了。。。