如何化大数据为商业价值
发布网友
发布时间:2022-04-27 04:59
我来回答
共2个回答
热心网友
时间:2022-06-26 14:56
北京大学商务智能研究中心主任王汉生教授在一篇文章中,提出了一个关于数据商业价值的理论框架,这个框架非常简单,就三个关键词:收入、支出、风险。
第一是收入。你要看自己的数据产品能否帮客户带来额外的收入。这里的关键词是“额外”。比如客户是卖豆浆的,以前没有你的数据分析,他每天卖100碗。有了你的数据分析之后,每天能卖150碗,多卖出去的50碗豆浆,就是你的数据带来的价值。
王汉生教授说,最理想的额外收入应该是新兴市场。比如我们放假开车出去玩的时候,会遇到堵车。这时候能不能出一个堵车险?每堵1分钟,保险公司赔你1块钱,补偿一下你郁闷的心情。传统保险公司之所以不做,是因为没办法实时监控一辆车的状态,不知道有没有堵车,更不知道堵了多久。但现在有了车联网数据,这种监控就有可能实现。这就是车联网数据带来的价值。
第二个关键词是“支出”。如果你的数据分析有可能给客户节约不必要的支出那就更好了。因为收入的增加往往有很强的不确定性,但相对来说,成本的控制是可以做到非常准确的。就像堵车险这个新兴市场,究竟能带来多少额外收入非常不确定。但如果你说有个超市,现在有100个收银员,通过技术改造,数据分析,合理安排,发现20个人就够了,直接节省了80个人的成本,这是非常确定的。
所以,如果数据分析可以节省支出,这件事更靠谱,更加可以预期。就拿中国的制造业来说,不管是生产汽车还是电脑,体量都很巨大。这些设备上的每个功能都是必须的吗?电脑上真的需要那么多USB接口吗?过去我们很难下判断,因为不知道用户是怎么使用这个设备的。但是今天有了物联网之后,这样的数据分析就有可能变成现实,这就是物联网数据的商业价值所在。
第三个关键词是“风险”。如果你的数据不能直接增加收入,也不能直接节省成本,但是可以控制风险,也有商业价值。看一个具体的例子。很多商业银行都有网上申请系统,用户通过互联网直接就能申请信用卡,或者别的产品。之所以在网上做,是因为流量大、成本低、效率高。但缺点是风险比较大,有些线下才能提供的材料无法获得。这时银行为了把控风险,就只能提高在线申请的门槛,降低通过率。这样做虽然增加了安全性,把坏人拦在了外面,但同时也可能挡住了很多好人,也就是银行需要的客户。这时候,如果你能提供独特的数据和分析,帮银行更准确地区分哪些线上申请的人是好人,哪些是坏人,银行就能放心地给更多人发卡,从而增加收入。数据在这里的价值,就是把对风险的把控转化为收入的提高。
热心网友
时间:2022-06-26 14:57
从数据分析中获取商业价值
请注意,这里涉及到一些高级的数据分析方法,例如数据挖掘、统计分析、自然语言处理和极端SQL等等。与原来的报告和OLAP技术不同,这些方法可以让你更好地探索数据和发现分析见解。
探索大数据以发现新的商业机会
很多大数据都是来自一些新的来源,这代表客户或合作伙伴互动的新渠道。和任何新的数据来源一样,大数据值得探索。通过数据探索,你可以了解一些之前所不知道的商业模式和事实*,比如新的客户群细分、客户行为、客户流失的形式,和最低成本的根本原因等等。
对已收集到的大数据进行分析
许多公司都收集了大量的数据,他们感觉这些数据存在着商业价值,但并不知道怎样从这些弄出来的值大的数据。不同行业的数据集有所不同,比如,如果你处于网络营销行业,你可能会有大量Web站点的日志数据集,这可以把数据按会话进行划分,进行分析以了解网站访客的行为并提升网站的访问体验。同样,来自制造业的质量保证数据将有助于公司生产出更可靠的产品和选择更好的供应商,而通过RFID数据可以帮助你更深入地供应链中产品的运动轨迹。
重点分析对你的行业有价值的大数据
大数据的类型和内容因行业而异,每一类数据对于每个行业的价值是不一样的。比如电信行业的呼叫详细记录(CDR),零售业、制造业或其他以产品为中心的行业的RFID数据,以及制造业(特别是汽车和消费电子)中机器人的传感器数据等等,这些都是各个行业中非常重要的数据。
理解非结构化的大数据
非结构化的信息主要指的是是使用文字表达的人类语言,这与大多数关系型数据有着很大的不同,你需要使用一些新的工具来进行自然语言处理、搜索和文本分析。把基于文本内容的业务流程进行可视化展示,比如,保险索赔过程,医疗病历记录,各个行业的呼叫中心和帮助台应用程序,以及以客户为导向的企业情感分析等内容均可以在进行处理后以可视化的形式表现出来。(摘自:中国客户关系网)