发布网友 发布时间:2022-04-27 06:00
共5个回答
热心网友 时间:2022-06-27 07:10
tan的计算:例如直角三角形之底为x,高为y,斜边为z,底与斜边之间的夹角为a,按定义:
tan a = y / x(直角三角形高除以直角三角形底边)
sina = y / z (直角三角形高除以直角三角形斜边)
cos a= x / z (直角三角形底边除以直角三角形斜边)
扩展资料:
设tan(A/2)=t
sinA=2t/(1+t^2) (A≠2kπ+π,k∈Z)
tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z)
cosA=(1-t^2)/(1+t^2) (A≠2kπ+π k∈Z)
二倍角公式
sin2α=2sinαcosα
tan2α=2tanα/(1-tan^2(α))
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
半角公式
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
热心网友 时间:2022-06-27 07:10
tan的计算:例如直角三角形之底为x,高为y,斜边为z,底与斜边之间的夹角为a,按定义:
tan a = y / x(直角三角形高除以直角三角形底边)
sina = y / z (直角三角形高除以直角三角形斜边)
cos a= x / z (直角三角形底边除以直角三角形斜边)
扩展资料
设tan(A/2)=t
sinA=2t/(1+t^2) (A≠2kπ+π,k∈Z)
tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z)
cosA=(1-t^2)/(1+t^2) (A≠2kπ+π k∈Z)
就是说sinA.tanA.cosA都可以用tan(A/2)来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了.
参考资料来源:百度百科-三角函数万能公式
热心网友 时间:2022-06-27 07:10
对于一个初中生来说,因为角度只限于锐角,所以可以构成直角三角形, tanA=对边/邻边热心网友 时间:2022-06-27 07:11
在直角三角形,对边比邻边。热心网友 时间:2022-06-27 07:12
tanA. 直角三角形的高比直角三角形的底边