归并排序算法:用两路归并算法,实现N个无素的排序
发布网友
发布时间:2022-04-27 05:43
我来回答
共2个回答
好二三四
时间:2022-06-13 06:35
排序算法是《数据结构与算法》中最基本的算法之一。排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。以下是归并排序算法:
归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:
- 自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第 2 种方法);
- 自下而上的迭代;
在《数据结构与算法 JavaScript 描述》中,作者给出了自下而上的迭代方法。但是对于递归法,作者却认为:
However, it is not possible to do so in JavaScript, as the recursion goes too deep for the language to handle.
然而,在 JavaScript 中这种方式不太可行,因为这个算法的递归深度对它来讲太深了。
说实话,我不太理解这句话。意思是 JavaScript 编译器内存太小,递归太深容易造成内存溢出吗?还望有大神能够指教。
和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是 O(nlogn) 的时间复杂度。代价是需要额外的内存空间。
2. 算法步骤
申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
设定两个指针,最初位置分别为两个已经排序序列的起始位置;
比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
重复步骤 3 直到某一指针达到序列尾;
将另一序列剩下的所有元素直接复制到合并序列尾。
3. 动图演示
代码实现
JavaScript
实例
function mergeSort(arr) { // 采用自上而下的递归方法
var len = arr.length;
if(len < 2) {
return arr;
}
var middle = Math.floor(len / 2),
left = arr.slice(0, middle),
right = arr.slice(middle);
return merge(mergeSort(left), mergeSort(right));
}
function merge(left, right)
{
var result = [];
while (left.length && right.length) {
if (left[0] <= right[0]) {
result.push(left.shift());
} else {
result.push(right.shift());
}
}
while (left.length)
result.push(left.shift());
while (right.length)
result.push(right.shift());
return result;
}
Python
实例
def mergeSort(arr):
import math
if(len(arr)<2):
return arr
middle = math.floor(len(arr)/2)
left, right = arr[0:middle], arr[middle:]
return merge(mergeSort(left), mergeSort(right))
def merge(left,right):
result = []
while left and right:
if left[0] <= right[0]:
result.append(left.pop(0))
else:
result.append(right.pop(0));
while left:
result.append(left.pop(0))
while right:
result.append(right.pop(0));
return result
Go
实例
func mergeSort(arr []int) []int {
length := len(arr)
if length < 2 {
return arr
}
middle := length / 2
left := arr[0:middle]
right := arr[middle:]
return merge(mergeSort(left), mergeSort(right))
}
func merge(left []int, right []int) []int {
var result []int
for len(left) != 0 && len(right) != 0 {
if left[0] <= right[0] {
result = append(result, left[0])
left = left[1:]
} else {
result = append(result, right[0])
right = right[1:]
}
}
for len(left) != 0 {
result = append(result, left[0])
left = left[1:]
}
for len(right) != 0 {
result = append(result, right[0])
right = right[1:]
}
return result
}
Java
实例
public class MergeSort implements IArraySort {
@Override
public int[] sort(int[] sourceArray) throws Exception {
// 对 arr 进行拷贝,不改变参数内容
int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
if (arr.length < 2) {
return arr;
}
int middle = (int) Math.floor(arr.length / 2);
int[] left = Arrays.copyOfRange(arr, 0, middle);
int[] right = Arrays.copyOfRange(arr, middle, arr.length);
return merge(sort(left), sort(right));
}
protected int[] merge(int[] left, int[] right) {
int[] result = new int[left.length + right.length];
int i = 0;
while (left.length > 0 && right.length > 0) {
if (left[0] <= right[0]) {
result[i++] = left[0];
left = Arrays.copyOfRange(left, 1, left.length);
} else {
result[i++] = right[0];
right = Arrays.copyOfRange(right, 1, right.length);
}
}
while (left.length > 0) {
result[i++] = left[0];
left = Arrays.copyOfRange(left, 1, left.length);
}
while (right.length > 0) {
result[i++] = right[0];
right = Arrays.copyOfRange(right, 1, right.length);
}
return result;
}
}
PHP
实例
function mergeSort($arr)
{
$len = count($arr);
if ($len < 2) {
return $arr;
}
$middle = floor($len / 2);
$left = array_slice($arr, 0, $middle);
$right = array_slice($arr, $middle);
return merge(mergeSort($left), mergeSort($right));
}
function merge($left, $right)
{
$result = [];
while (count($left) > 0 && count($right) > 0) {
if ($left[0] <= $right[0]) {
$result[] = array_shift($left);
} else {
$result[] = array_shift($right);
}
}
while (count($left))
$result[] = array_shift($left);
while (count($right))
$result[] = array_shift($right);
return $result;
}
C
实例
int min(int x, int y) {
return x < y ? x : y;
}
void merge_sort(int arr[], int len) {
int *a = arr;
int *b = (int *) malloc(len * sizeof(int));
int seg, start;
for (seg = 1; seg < len; seg += seg) {
for (start = 0; start < len; start += seg * 2) {
int low = start, mid = min(start + seg, len), high = min(start + seg * 2, len);
int k = low;
int start1 = low, end1 = mid;
int start2 = mid, end2 = high;
while (start1 < end1 && start2 < end2)
b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];
while (start1 < end1)
b[k++] = a[start1++];
while (start2 < end2)
b[k++] = a[start2++];
}
int *temp = a;
a = b;
b = temp;
}
if (a != arr) {
int i;
for (i = 0; i < len; i++)
b[i] = a[i];
b = a;
}
free(b);
}
递归版:
实例
void merge_sort_recursive(int arr[], int reg[], int start, int end) {
if (start >= end)
return;
int len = end - start, mid = (len >> 1) + start;
int start1 = start, end1 = mid;
int start2 = mid + 1, end2 = end;
merge_sort_recursive(arr, reg, start1, end1);
merge_sort_recursive(arr, reg, start2, end2);
int k = start;
while (start1 <= end1 && start2 <= end2)
reg[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++];
while (start1 <= end1)
reg[k++] = arr[start1++];
while (start2 <= end2)
reg[k++] = arr[start2++];
for (k = start; k <= end; k++)
arr[k] = reg[k];
}
void merge_sort(int arr[], const int len) {
int reg[len];
merge_sort_recursive(arr, reg, 0, len - 1);
}
C++
迭代版:
实例
template<typename T> // 整數或浮點數皆可使用,若要使用物件(class)時必須設定"小於"(<)的運算子功能
void merge_sort(T arr[], int len) {
T *a = arr;
T *b = new T[len];
for (int seg = 1; seg < len; seg += seg) {
for (int start = 0; start < len; start += seg + seg) {
int low = start, mid = min(start + seg, len), high = min(start + seg + seg, len);
int k = low;
int start1 = low, end1 = mid;
int start2 = mid, end2 = high;
while (start1 < end1 && start2 < end2)
b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];
while (start1 < end1)
b[k++] = a[start1++];
while (start2 < end2)
b[k++] = a[start2++];
}
T *temp = a;
a = b;
b = temp;
}
if (a != arr) {
for (int i = 0; i < len; i++)
b[i] = a[i];
b = a;
}
delete[] b;
}
递归版:
实例
void Merge(vector<int> &Array, int front, int mid, int end) {
// preconditions:
// Array[front...mid] is sorted
// Array[mid+1 ... end] is sorted
// Copy Array[front ... mid] to LeftSubArray
// Copy Array[mid+1 ... end] to RightSubArray
vector<int> LeftSubArray(Array.begin() + front, Array.begin() + mid + 1);
vector<int> RightSubArray(Array.begin() + mid + 1, Array.begin() + end + 1);
int idxLeft = 0, idxRight = 0;
LeftSubArray.insert(LeftSubArray.end(), numeric_limits<int>::max());
RightSubArray.insert(RightSubArray.end(), numeric_limits<int>::max());
// Pick min of LeftSubArray[idxLeft] and RightSubArray[idxRight], and put into Array[i]
for (int i = front; i <= end; i++) {
if (LeftSubArray[idxLeft] < RightSubArray[idxRight]) {
Array[i] = LeftSubArray[idxLeft];
idxLeft++;
} else {
Array[i] = RightSubArray[idxRight];
idxRight++;
}
}
}
void MergeSort(vector<int> &Array, int front, int end) {
if (front >= end)
return;
int mid = (front + end) / 2;
MergeSort(Array, front, mid);
MergeSort(Array, mid + 1, end);
Merge(Array, front, mid, end);
}
C#
实例
public static List<int> sort(List<int> lst) {
if (lst.Count <= 1)
return lst;
int mid = lst.Count / 2;
List<int> left = new List<int>(); // 定义左侧List
List<int> right = new List<int>(); // 定义右侧List
// 以下兩個循環把 lst 分為左右兩個 List
for (int i = 0; i < mid; i++)
left.Add(lst[i]);
for (int j = mid; j < lst.Count; j++)
right.Add(lst[j]);
left = sort(left);
right = sort(right);
return merge(left, right);
}
/// <summary>
/// 合併兩個已經排好序的List
/// </summary>
/// <param name="left">左側List</param>
/// <param name="right">右側List</param>
/// <returns></returns>
static List<int> merge(List<int> left, List<int> right) {
List<int> temp = new List<int>();
while (left.Count > 0 && right.Count > 0) {
if (left[0] <= right[0]) {
temp.Add(left[0]);
left.RemoveAt(0);
} else {
temp.Add(right[0]);
right.RemoveAt(0);
}
}
if (left.Count > 0) {
for (int i = 0; i < left.Count; i++)
temp.Add(left[i]);
}
if (right.Count > 0) {
for (int i = 0; i < right.Count; i++)
temp.Add(right[i]);
}
return temp;
}
Ruby
实例
def merge list
return list if list.size < 2
pivot = list.size / 2
# Merge
lambda { |left, right|
final = []
until left.empty? or right.empty?
final << if left.first < right.first; left.shift else right.shift end
end
final + left + right
}.call merge(list[0...pivot]), merge(list[pivot..-1])
end
参考地址:
https://github.com/hustcc/JS-Sorting-Algorithm/blob/master/5.mergeSort.md
https://zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
以下是热心网友对归并排序算法的补充,仅供参考:
热心网友提供的补充1:
分而治之
可以看到这种结构很像一棵完全二叉树,本文的归并排序我们采用递归去实现(也可采用迭代的方式去实现)。分阶段可以理解为就是递归拆分子序列的过程,递归深度为log2n。
合并相邻有序子序列
再来看看治阶段,我们需要将两个已经有序的子序列合并成一个有序序列,比如上图中的最后一次合并,要将[4,5,7,8]和[1,2,3,6]两个已经有序的子序列,合并为最终序列[1,2,3,4,5,6,7,8],来看下实现步骤。
import java.util.Arrays;
/**
* Created by chengxiao on 2016/12/8.
*/
public class MergeSort {
public static void main(String []args){
int []arr = {9,8,7,6,5,4,3,2,1};
sort(arr);
System.out.println(Arrays.toString(arr));
}
public static void sort(int []arr){
int []temp = new int[arr.length];//在排序前,先建好一个长度等于原数组长度的临时数组,避免递归中频繁开辟空间
sort(arr,0,arr.length-1,temp);
}
private static void sort(int[] arr,int left,int right,int []temp){
if(left<right){
int mid = (left+right)/2;
sort(arr,left,mid,temp);//左边归并排序,使得左子序列有序
sort(arr,mid+1,right,temp);//右边归并排序,使得右子序列有序
merge(arr,left,mid,right,temp);//将两个有序子数组合并操作
}
}
private static void merge(int[] arr,int left,int mid,int right,int[] temp){
int i = left;//左序列指针
int j = mid+1;//右序列指针
int t = 0;//临时数组指针
while (i<=mid && j<=right){
if(arr[i]<=arr[j]){
temp[t++] = arr[i++];
}else {
temp[t++] = arr[j++];
}
}
while(i<=mid){//将左边剩余元素填充进temp中
temp[t++] = arr[i++];
}
while(j<=right){//将右序列剩余元素填充进temp中
temp[t++] = arr[j++];
}
t = 0;
//将temp中的元素全部拷贝到原数组中
while(left <= right){
arr[left++] = temp[t++];
}
}
}
以上为归并排序算法详细介绍,插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等排序算法各有优缺点,用一张图概括:
关于时间复杂度
平方阶 (O(n2)) 排序 各类简单排序:直接插入、直接选择和冒泡排序。
线性对数阶 (O(nlog2n)) 排序 快速排序、堆排序和归并排序;
O(n1+§)) 排序,§ 是介于 0 和 1 之间的常数。 希尔排序
线性阶 (O(n)) 排序 基数排序,此外还有桶、箱排序。
关于稳定性
稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。
不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序。
名词解释:
n:数据规模
k:"桶"的个数
In-place:占用常数内存,不占用额外内存
Out-place:占用额外内存
稳定性:排序后 2 个相等键值的顺序和排序之前它们的顺序相同
热心网友
时间:2022-06-13 03:43
合并排序(MERGE SORT)是又一类不同的排序方法,合并的含义就是将两个或两个以上的有序数据序列合并成一个新的有序数据序列,因此它又叫归并算法。它的基本思想就是假设数组A有N个元素,那么可以看成数组A是又N个有序的子序列组成,每个子序列的长度为1,然后再两两合并,得到了一个 N/2 个长度为2或1的有序子序列,再两两合并,如此重复,值得得到一个长度为N的有序数据序列为止,这种排序方法称为2—路合并排序。
例如数组A有7个数据,分别是: 49 38 65 97 76 13 27,那么采用归并排序算法的操作过程如图7所示:
初始值 [49] [38] [65] [97] [76] [13] [27]
看成由长度为1的7个子序列组成
第一次合并之后 [38 49] [65 97] [13 76] [27]
看成由长度为1或2的4个子序列组成
第二次合并之后 [38 49 65 97] [13 27 76]
看成由长度为4或3的2个子序列组成
第三次合并之后 [13 27 38 49 65 76 97]
合并算法的核心操作就是将一维数组中前后相邻的两个两个有序序列合并成一个有序序列。合并算法也可以采用递归算法来实现,形式上较为简单,但实用性很差。合并算法的合并次数是一个非常重要的量,根据计算当数组中有3到4个元素时,合并次数是2次,当有5到8个元素时,合并次数是3次,当有9到16个元素时,合并次数是4次,按照这一规律,当有N个子序列时可以推断出合并的次数是X(2 >=N,符合此条件的最小那个X)。
其时间复杂度为:O(nlogn).所需辅助存储空间为:O(n)
归并算法如下:
long merge(long *A,long p,long q,long r)
{
long n1,n2,i,j,k;
long *L,*R;
n1=q-p+1;
n2=r-q;
L=(long *)malloc((n1+2)*sizeof(long));
R=(long *)malloc((n2+2)*sizeof(long));
for(i=1;i<=n1;i++)
L=A[p+i-1];
for(j=1;j<=n2;j++)
R[j]=A[q+j];
L[n1+1]=R[n2+1]=RAND_MAX;
i=j=1;
for(k=p;k<=r;k++)
{
if(L<=R[j])
{
A[k]=L;
i++;
}
else
{
A[k]=R[j];
j++;
}
}
free(L);
free(R);
return 0;
}
long mergesort(long *A,long p,long r)
{
long q;
if(p<r)
{
q=(p+r)/2;
mergesort(A,p,q);
mergesort(A,q+1,r);
merge(A,p,q,r);
}
return 0;
}