问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

什么是数据挖掘?数据挖掘怎么做啊?

发布网友 发布时间:2022-04-20 03:44

我来回答

3个回答

热心网友 时间:2023-07-12 13:44

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

数据挖掘流程:

热心网友 时间:2023-07-12 13:44

数据挖掘是从大量的数据中,抽取出潜在的、有价值的知识(模型或规则)的过程。
1. 数据挖掘能做什么?

1)数据挖掘能做以下六种不同事情(分析方法):

· 分类 (Classification)

· 估值(Estimation)

· 预言(Prediction)

· 相关性分组或关联规则(Affinity grouping or association rules)

· 聚集(Clustering)

· 描述和可视化(Des cription and Visualization)

2)数据挖掘分类

以上六种数据挖掘的分析方法可以分为两类:直接数据挖掘;间接数据挖掘

· 直接数据挖掘

目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以

理解成数据库中表的属性,即列)进行描述。

· 间接数据挖掘

目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系



· 分类、估值、预言属于直接数据挖掘;后三种属于间接数据挖掘

3)各种分析方法的简介

· 分类 (Classification)

首先从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分

类模型,对于没有分类的数据进行分类。

例子:

a. 信用卡申请者,分类为低、中、高风险

b. 分配客户到预先定义的客户分片

注意: 类的个数是确定的,预先定义好的

· 估值(Estimation)

估值与分类类似,不同之处在于,分类描述的是离散型变量的输出,而估值处理连续值的

输出;分类的类别是确定数目的,估值的量是不确定的。

例子:

a. 根据购买模式,估计一个家庭的孩子个数

b. 根据购买模式,估计一个家庭的收入

c. 估计real estate的价值

一般来说,估值可以作为分类的前一步工作。给定一些输入数据,通过估值,得到未知的

连续变量的值,然后,根据预先设定的阈值,进行分类。例如:银行对家庭贷款业务,运

用估值,给各个客户记分(Score 0~1)。然后,根据阈值,将贷款级别分类。

· 预言(Prediction)

通常,预言是通过分类或估值起作用的,也就是说,通过分类或估值得出模型,该模型用

于对未知变量的预言。从这种意义上说,预言其实没有必要分为一个单独的类。

预言其目的是对未来未知变量的预测,这种预测是需要时间来验证的,即必须经过一定时

间后,才知道预言准确性是多少。

· 相关性分组或关联规则(Affinity grouping or association rules)

决定哪些事情将一起发生。

例子:

a. 超市中客户在购买A的同时,经常会购买B,即A => B(关联规则)

b. 客户在购买A后,隔一段时间,会购买B (序列分析)

· 聚集(Clustering)

聚集是对记录分组,把相似的记录在一个聚集里。聚集和分类的区别是聚集不依赖于预先

定义好的类,不需要训练集。

例子:

a. 一些特定症状的聚集可能预示了一个特定的疾病

b. 租VCD类型不相似的客户聚集,可能暗示成员属于不同的亚文化群

聚集通常作为数据挖掘的第一步。例如,"哪一种类的促销对客户响应最好?",对于这一

类问题,首先对整个客户做聚集,将客户分组在各自的聚集里,然后对每个不同的聚集,

回答问题,可能效果更好。

· 描述和可视化(Des cription and Visualization)

是对数据挖掘结果的表示方式。

2.数据挖掘的商业背景

数据挖掘首先是需要商业环境中收集了大量的数据,然后要求挖掘的知识是有价值的。有

价值对商业而言,不外乎三种情况:降低开销;提高收入;增加股票价格。

1)数据挖掘作为研究工具 (Research)

2)数据挖掘提高过程控制(Process Improvement)

3)数据挖掘作为市场营销工具(Marketing)

4)数据挖掘作为客户关系管理CRM工具(Customer Relationship Management)

3.数据挖掘的技术背景

1)数据挖掘技术包括三个主要部分:算法和技术;数据;建模能力

2)数据挖掘和机器学习(Machine Learning)

· 机器学习是计算机科学和人工智能AI发展的产物

· 机器学习分为两种学习方式:自组织学习(如神经网络);从例子中归纳出规则(如决

策树)

· 数据挖掘由来

数据挖掘是八十年代,投资AI研究项目失败后,AI转入实际应用时提出的。它是一个新兴

的,面向商业应用的AI研究。选择数据挖掘这一术语,表明了与统计、精算、长期从事预

言模型的经济学家之间没有技术的重叠。

3)数据挖掘和统计

统计也开始支持数据挖掘。统计本包括预言算法(回归)、抽样、基于经验的设计等

4)数据挖掘和决策支持系统

· 数据仓库

· OLAP(联机分析处理)、Data Mart(数据集市)、*数据库

· 决策支持工具融合

将数据仓库、OLAP,数据挖掘融合在一起,构成企业决策分析环境。

4. 数据挖掘的社会背景

数据挖掘与个人预言:数据挖掘号称能通过历史数据的分析,预测客户的行为,而事实上

,客户自己可能都不明确自己下一步要作什么。所以,数据挖掘的结果,没有人们想象中

神秘,它不可能是完全正确的。

客户的行为是与社会环境相关连的,所以数据挖掘本身也受社会背景的影响。比如说,在

美国对银行信用卡客户信用评级的模型运行得非常成功,但是,它可能不适合中国

转载的

热心网友 时间:2023-07-12 13:45

数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的,然后发展到可对数据库进行查询和访问,进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段,它不仅能对过去的数据进行查询和遍历,并且能够找出过去数据之间的潜在联系,从而促进信息的传递。现在数据挖掘技术在商业应用中已经可以马上投入使用,因为对这种技术进行支持的三种基础技术已经发展成熟,他们是:
- - 海量数据搜集
- - 强大的多处理器计算机
- - 数据挖掘算法
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
个人账户养老金预测公式:现有5万元,缴费20年,能领多少钱? 临沂比较有名的男装品牌 呼伦贝尔市悦动网络科技有限公司怎么样? 呼伦贝尔中汇实业有限公司怎么样? 呼伦贝尔油玉不绝电子商务有限公司怎么样? 如何避免wps卡顿? 属鼠的男人找对象是属什么,属鼠的人和什么属相合 96年鼠的姻缘在哪年 属相相合年份运势提升 2024属鼠找对象属什么最佳 黑客攻击网站能报案吗 挖掘机有哪些用途? 挖掘的意思是?反义词是? “挖掘” 和 “发掘” 有区别吗 开发和挖掘,有什么区别? 挖掘是什么词义 挖掘 是什么意思 发掘和挖掘意思的区别是什么? 挖掘的读音是什么 挖掘的近义词是什么啊 挖掘的拼音是什么 挖掘是什么意思 皮肤上的螨虫是什么样子 螨虫是什么样的 什么颜色的 肉眼能看见吗 富士包围曝光怎么关闭 感叹童年的美好的句子 形容“孩子童年美好回忆”的句子有哪些? 童年的回忆语句 关于儿时美好回忆的优美句子 勾起儿时回忆的句子有哪些? 儿时记忆的唯美诗句 开发和挖掘这两个词有什么区别 考古学告诉请进,“发掘”和“挖掘”有什么区别? 大数据挖掘技术涉及哪些内容? 新手学挖掘机的技巧 挖掘的掘怎么组词 数据挖掘的概念? 富士相机finepix色彩设置 小米air2pro对比漫步者tws1pro 小米蓝牙耳机air2pro 小米Air2pro到底怎么样? 小米air2s和air2pro的区别? 为什么小米商城的小米air2pro下架了? 小米air2pro可以用快充头吗 小米air2pro值得买吗 小米耳机air2pro怎么预定? 为什么小米air2pro下架了 小米air2pro重置后搜不到 小米air2pro开发者怎么调 小米air2pro对比airpods2 小米air2 pro和fiil cc2哪个好?