如何证明平面上两条平行直线间的距离相等
发布网友
发布时间:2023-11-01 06:25
我来回答
共1个回答
热心网友
时间:2024-12-11 17:54
设两条直线方程为
Ax+By+C1=0
Ax+By+C2=0
则其距离公式为|C1-C2|/√(A²+B²)
推导:两平行直线间的距离就是从一条直线上任一点到另一条直线的距离,设点P(a,b)在直线Ax+By+C1=0上,则满足Aa+Bb+C1=0,即Ab+Bb=-C1,由点到直线距离公式,P到直线Ax+By+C2=0距离为
d=|Aa+Bb+C2|/√(A^2+B^2)=|-C1+C2|/√(A^2+B^2)
=|C1-C2|/√(A^2+B^2)