大数据分析需要什么样的基础技能?高等数学?
发布网友
发布时间:2022-04-29 02:26
我来回答
共3个回答
热心网友
时间:2022-06-28 17:12
这个要求的东西蛮多的,高等数学,线性代数和概率统计是基础,一般硕士才做这个的,你要是光会软件操作也不行,不懂的算法的原理很难解释数据。有分类算法,聚类算法,回归算法,关联算法等等。
热心网友
时间:2022-06-28 17:13
微信关注"大数据帮帮",回复“视频”,免费领取徐老师50G大数据学习视频(百度网盘),后续大数据前沿视频不断更新中
热心网友
时间:2022-06-28 17:13
对于大数据技术,需要的数学知识有哪些?!
(1)概率论与数理统计
这部分与大数据技术开发的关系非常密切,条件概率、独立性等基本概念、随机变量及其分布、*随机变量及其分布、方差分析及回归分析、随机过程(特别是Markov)、参数估计、Bayes理论等在大数据建模、挖掘中就很重要。
大数据具有天然的高维特征,在高维空间中进行数据模型的设计分析就需要一定的*随机变量及其分布方面的基础。Bayes定理更是分类器构建的基础之一。除了这些这些基础知识外,条件随机场CRF、隐Markov模型、n-gram等在大数据分析中可用于对词汇、文本的分析,可以用于构建预测分类模型。
当然以概率论为基础的信息论在大数据分析中也有一定作用,比如信息增益、互信息等用于特征分析的方法都是信息论里面的概念。
(2)线性代数
这部分的数学知识与大数据技术开发的关系也很密切,矩阵、转置、秩 分块矩阵、向量、正交矩阵、向量空间、特征值与特征向量等在大数据建模、分析中也是常用的技术手段。
在互联网大数据中,许多应用场景的分析对象都可以抽象成为矩阵表示,大量Web页面及其关系、微博用户及其关系、文本集中文本与词汇的关系等等都可以用矩阵表示。比如对于Web页面及其关系用矩阵表示时,矩阵元素就代表了页面a与另一个页面b的关系,这种关系可以是指向关系,1表示a和b之间有超链接,0表示a,b之间没有超链接。著名的PageRank算法就是基于这种矩阵进行页面重要性的量化,并证明其收敛性。
以矩阵为基础的各种运算,如矩阵分解则是分析对象特征提取的途径,因为矩阵代表了某种变换或映射,因此分解后得到的矩阵就代表了分析对象在新空间中的一些新特征。所以,奇异值分解SVD、PCA、NMF、MF等在大数据分析中的应用是很广泛的。
(3)最优化方法
模型学习训练是很多分析挖掘模型用于求解参数的途径,基本问题是:给定一个函数f:A→R,寻找一个元素a0∈A,使得对于所有A中的a,f(a0)≤f(a)(最小化);或者f(a0)≥f(a)(最大化)。优化方法取决于函数的形式,从目前看,最优化方法通常是基于微分、导数的方法,例如梯度下降、爬山法、最小二乘法、共轭分布法等。
(4)离散数学
离散数学的重要性就不言而喻了,它是所有计算机科学分支的基础,自然也是大数据技术的重要基础。