发布网友 发布时间:2022-04-29 00:45
共4个回答
热心网友 时间:2022-06-26 17:32
若连续型随机变量 X的概率密度为
其中μ,σ(σ>0)为常数,则称 X服从参数为μ,σ的正态分布或高斯(Gauss)分布,
1、曲线关于x=μ对称.这表明对于任意h>0
2、当x=μ时取到最大值
x离μ越远,f(x)的值越小.这表明对于同样长度的区间,当区间离μ越远,X 落在这个区间上的概率越小.
在 x=μ±a处曲线有拐点.曲线以 Ox 轴为渐近线.
热心网友 时间:2022-06-26 17:32
正态分布公式
正态分布函数密度曲线可以表示为:称x服从正态分布,记为X~N(m,s2),其中μ为均值,s为标准差,X∈(-∞,+ ∞ )。标准正态分布另正态分布的μ为0,s为1。
扩展资料
正态分布符号定义
若随机变量X服从一个数学期望为μ、方差为的高斯分布,记为N(μ,)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。正态分布有两个参数,即均数(μ)和标准差(σ)。
μ是位置参数,当σ固定不变时, μ越大,曲线沿横轴,越向右移动;反之, μ越小,则曲线沿横轴,越向左移动。是形状参数,当μ固定不变时,σ越大,曲线越平阔;σ越小,曲线越尖峭。通常用表示标准正态分布。
参考资料来源:百度百科-正态分布
热心网友 时间:2022-06-26 17:33
正态分布公式都不会出现a、b,只会出现均值μ和方差σ^2。热心网友 时间:2022-06-26 17:33
如图