发布网友 发布时间:2022-04-29 07:31
共3个回答
热心网友 时间:2022-06-12 02:54
祖冲之,中国南北朝时期著名的数学家、天文学家。他是世界上将圆周率精确到小数点后七位的第一人,这一研究发现比西方早了1100多年。
祖冲之字文远,原籍范阳遒县(今河北涞源县),后来为了躲避北方战乱,祖先迁居江南。他出生于一个士大夫家庭,父亲和祖父对天文、历法都很有研究。祖冲之受家庭的影响,从小就热爱科学。*之后,祖冲之决定致力于圆周率的研究,计算出更加准确的圆周率。
圆是自然界中最常见的几何图形,许多物体都是圆形。可是怎样计算圆的周长和面积呢?古人很早就进行了研究和探索。古人发现圆的周长与直径的比是一个常数,称为圆周率。如果能准确地求出圆周率,再用直尺量出直径的长度,圆的周长和面积就容易求出来了。圆周率到底是多少呢?我国古代有一本算书叫《周髀算经》,这是我国最早的数学著作之一。书中提出了“径一周三”的概念,这个圆周率称为古率,这当然太粗略了。两汉末年的刘歆求出圆周率的值为3.1547。东汉张衡计算出的圆周率为3.1622。三国末年刘徽创造出包含有极限思想的“割圆术”,计算出了内接正192边形的周长和面积,得出圆周率为3.14。后来他又计算出圆内接3072边形的周长和面积,得出圆周率为3.1416(3927/1250)。
祖冲之认为前人的这些计算结果还是太粗略了,误差很大。但他并没有蔑视前人的研究成果,而是对他们的研究方法进行了认真的研究与思考。后来,他在前人研究成果的基础上,对计算圆周率的方法进行了革新,这种新的计算方法被命名为“缀术”。运用此方法,祖冲之比较精确地计算出了圆周率在3.1415926到3.1415927之间,并用22/7(疏率)和355/113(密率)这两个分数值来表示。这是当时世界上最先进的圆周率。西方直到1573年才由德国奥托较为精确地计算出圆周率,比祖冲之晚了1100多年。
祖冲之准确地计算出圆周率后七位数字以后,很快在实践中得到了运用。他自己曾用他的圆周率研究过度量衡的问题,并用于鉴定古量器的计算。北周武帝保宝元年(公元561年)所制的玉斗就是以3.1415926为圆周率计算出来的。祖冲之将他的研究成果写成了《缀书》一书。隋唐时期,《缀书》一直是数学教育的基本内容之一。可惜后来因为战乱该书失传了,这是我国数学史上的一大损失。
热心网友 时间:2022-06-12 04:12
祖冲之发现的是正6x2ⁿ边率,并非圆周率。热心网友 时间:2022-06-12 05:46
他通过计算内接正1536边形的面积,算出圆周率为3.1416,用分数表示为3927/1250,这在当时已经是够精确的了。但祖冲之并不满足于此,进一步提出了3.1415926<π<3.1415927。祖冲之一下子把圆周率的精确度提高了一万倍。而且他用不足和过剩近似值表示无理数值的变化范围是十分了不起的,这正是现代关于无理数表示的一个基本方法。由于中国古代存在着运用分数的习惯,祖冲之还用二个分数22/7(约率)和355/113(密率)的值表示圆周率。密率355/113近似于3.1415929(已精确到7位有效数字),这是最佳渐近分数,欧洲一直到1573年才得到这一数值,比祖冲之要晚一千多年。