方差怎么求 要公式 谢谢
发布网友
发布时间:2022-04-29 04:40
我来回答
共1个回答
热心网友
时间:2023-10-12 05:05
若x1,x2,x3......xn的平均数为m
则方差s^2=1/n[(x1-m)^2+(x2-m)^2+.......+(xn-m)^2]
设方差为S^2,平均数为x
1若:
平均数变为(x+a)那么,每个数也增加了a,则方差为:S^2.(方差不变)
2若:
平均数为bx那么,每个数是原来的b倍,则方差为
:b^2*S^2,(即扩大了b^2倍)
热心网友
时间:2023-10-12 05:05
若x1,x2,x3......xn的平均数为m
则方差s^2=1/n[(x1-m)^2+(x2-m)^2+.......+(xn-m)^2]
设方差为S^2,平均数为x
1若:
平均数变为(x+a)那么,每个数也增加了a,则方差为:S^2.(方差不变)
2若:
平均数为bx那么,每个数是原来的b倍,则方差为
:b^2*S^2,(即扩大了b^2倍)
热心网友
时间:2023-10-12 05:05
若x1,x2,x3......xn的平均数为m
则方差s^2=1/n[(x1-m)^2+(x2-m)^2+.......+(xn-m)^2]
设方差为S^2,平均数为x
1若:
平均数变为(x+a)那么,每个数也增加了a,则方差为:S^2.(方差不变)
2若:
平均数为bx那么,每个数是原来的b倍,则方差为
:b^2*S^2,(即扩大了b^2倍)
热心网友
时间:2023-10-12 05:05
若x1,x2,x3......xn的平均数为m
则方差s^2=1/n[(x1-m)^2+(x2-m)^2+.......+(xn-m)^2]
设方差为S^2,平均数为x
1若:
平均数变为(x+a)那么,每个数也增加了a,则方差为:S^2.(方差不变)
2若:
平均数为bx那么,每个数是原来的b倍,则方差为
:b^2*S^2,(即扩大了b^2倍)