发布网友 发布时间:2022-04-28 11:02
共1个回答
热心网友 时间:2023-10-01 22:47
视线追踪技术中广泛运用的方法叫做“瞳孔—角膜反射方法”(the pupil center cornea reflection technique),其所利用的眼动过程中保持不变的特征,是眼球角膜外表面上的普尔钦斑(Purkinje image)——眼球角膜上的一个亮光点,由进入瞳孔的光线在角膜外表面上反射(corneal reflection)而产生。
由于摄像机的位置固定、屏幕(光源)的位置固定、眼球中心位置不变(假设眼球为球状,且头部不动),普尔钦斑的绝对位置并不随眼球的转动而变化(其实,头部的小幅度运动也能通过角膜反射计算出来)。但其相对于瞳孔和眼球的位置则是在不断变化的——比如,当你盯着摄像头时,普尔钦斑就在你瞳孔之间;而当你抬起头时,普尔钦斑就在你的瞳孔下方。这样一来,只要实时定位眼睛图像上的瞳孔、和普尔钦斑的位置,计算出角膜反射向量,便能利用几何模型,估算得到用户的视线方向。再基于前期定标过程(即让用户注视电脑屏幕上特定的点)中所建立的用户眼睛特征与电脑屏幕呈现内容之间的关系,仪器就能判断出用户究竟在看屏幕上的什么内容了。
定位瞳孔中心的位置是视线追踪技术中的关键一步,但一个问题是,相比于虹膜与眼白之间的极其明显的分界线来说,瞳孔和虹膜之间的分界线并没那么清晰,特别是咱黑眼睛黄皮肤。因此,研究者为了提高这一步的精准度,又设计了“亮、暗瞳差分方案”,即:交替用不同方位的光源向人眼发出近红外线,然后在每两帧相邻的图像中,分别获取用户明亮的瞳孔(bright pupil,亮瞳)和暗淡的瞳孔(dark pupil,暗瞳),进行叠加差分,从而更清晰地“抠”出瞳孔,再计算瞳孔的质心和形状等参数。
究竟拍到的是“亮瞳”还是“暗瞳”,这取决于摄像头是否与光源共线。如果摄像头与光源在同一条线上,则摄像头拍到的瞳孔是被光照亮的,也就是“亮瞳”。这和拍照时,相机闪光灯直对着拍摄对象时照片上会出现“红眼”的原理是类似的(忍不住想提一下,百科说红眼是因为闪光灯使瞳孔暂时变大,其实有点扯,首先不相关,其次瞳孔在强光下会变小,不然岂不被闪瞎了眼)。如果二者不共线,则拍到的就是正常的“暗瞳”了。所以,支持亮暗瞳追踪的眼动仪上都有两套位置不同的近红外光源。
之所以要用近红外线,是因为人眼无法察觉到,不至于晃眼,影响用户。这些光束很弱,只要研究者按照眼动仪说明书上指示的距离安排用户就坐(比如离眼动仪60cm以上),用户即便在工作的眼动仪前待8个小时也不会有放射性危险。
与上述“非侵入式”技术相对应的视线追踪技术,则需要用户与测试设备上的传感器直接接触。比如早期的眼动测试会在测试者的眼睛里塞进一个类似硬质*眼镜的东西,监测随着眼睛运动而不断变化的磁场,从而知道你在看什么地方,或者在测试者的眼睛周围贴上电极,监测电位变化。这些方法听着有点慑人,操作起来也麻烦,但获取的数据比较准确。
那么,普通的商用眼动测试究竟能有多精确呢?这就得看测试用眼动仪的具体参数了。分空间和时间两个维度:空间上的相关参数有精确度、漂移和屏幕尺寸,时间上的参数是采样率(延时)。比如:Tobii X120的精确度是0.5度,随时间的漂移在0.3度内,如果以用户距离屏幕60cm计算的话,则偏移量约在0.13mm;其采样率为120Hz,则延时在17ms,因为每隔两帧才能算一次瞳孔。但有研究者发现,实际测试中的位置偏差要比这里算出来的值大很多,可能与用户移动头部、或定标问题有关。如果用tobii这一系列做阅读测试的话,很可能无法准确定位用户到底在看界面上的哪一行字。因此在作分析时,要避免太相信结果中所给出的注视点。
同时在做测试时,也应尽量遵守实验规范。现在的商用眼动仪一般都能对头动进行补偿计算,但是,即便眼动仪允许用户自由活动,也有一个规定的头动范围,比如Tobii X60和T60型号的头动范围在44×22×30cm(长宽高),而X120和T120的频率高、允许的头动范围更小,为30×22×30cm(长宽高),测试时应保证用户的头动幅度在此范围内。而在定标时,则应允许用户在规定范围内的移动头部,在定标阶段将头动纳入考虑。