发布网友 发布时间:2022-04-28 12:08
共5个回答
热心网友 时间:2023-10-08 22:55
二三五七和十一,
十三后面是十七,
还有十九别忘记,
二三九, 三一七,
四一,四三,四十七,
五三九, 六一七,
七一,七三,七十九,
八三,*,九十七.
质数又称素数。一个大于1的自然数,除了1和它自身外,不能整除其他自然数的数叫做质数;否则称为合数。
质数数目计算:
尽管整个素数是无穷的,仍然有人会问“100,000以下有多少个素数?”,“一个随机的100位数多大可能是素数?”。素数定理可以回答此问题。
1、在一个大于1的数a和它的2倍之间(即区间(a, 2a]中)必存在至少一个素数。
2、存在任意长度的素数等差数列。
3、一个偶数可以写成两个合数之和,其中每一个合数都最多只有9个质因数。(挪威数学家布朗,1920年)
4、一个偶数必定可以写成一个质数加上一个合成数,其中合数的因子个数有上界。(瑞尼,1948年)
5、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为 (1 + 5)(中国潘承洞,1968年)
6、一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数。简称为 (1 + 2)
热心网友 时间:2023-10-08 22:56
2,3,5,7,11,13,17,19,
23,29,31,37,41,43,
47,53,59,61,67,71,
73,79,83,89,97 共25个
100以内质数口诀
二三五七和十一,
十三后面是十七,
还有十九别忘记,
二三九, 三一七,
四一,四三,四十七,
五三九, 六一七,
七一,七三,七十九,
八三,*,九十七.
扩展资料:
质数的由来:
1.费马数2^(2^n)+1
被称为“17世纪最伟大的法国数学家”的费马,也研究过质数的性质.他发现,设F(n)=2^(2^n)+1,则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=4294967297)。
他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数.这便是费马数.但是,就是在F5上出了问题!费马死后67年,25岁的瑞士数学家欧拉证明: F5=4294967297=641×6700417,它并非质数,而是一个合数!
更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数.目前由于平方开得较大,因而能够证明的也很少.现在数学家们取得Fn的最大值为:n=1495.这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数.质数和费马开了个大玩笑!这又是一个合情推理失败的案例!
2.梅森素数
17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1 ,当p是质数时,2^p-1是质数.他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数.p=2,3,5,7时,2^p-1都是素数,但p=11时,所得2047=23×89却不是素数.
还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证.梅森去世250年后,美国数学家科勒证明,2^67-1=193707721×761838257287,是一个合数.这是第九个梅森数.20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数.质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难.
现在,数学家找到的最大的梅森数是一个有9808357位的数:2^32582657-1.数学家虽然可以找到很大的质数,但质数的规律还是无法循通.
热心网友 时间:2023-10-08 22:56
二三五七和十一,热心网友 时间:2023-10-08 22:57
呃,这个其实很简单。100以内的就先把他们列出来(数学书上就有),首先偶数除0和2排除的所有偶数排除在外。然后把5的倍数,也就是个位上是0或5的数给排除。那么就很容易了,在把3的倍数排除,也就是把各个数位上的数相加,和能被三整除就是的3的倍数。这样,剩下就是质数(也就是素数)。但是其中有几个数比较特殊,比如:91。这个数看似2、3、5的倍数都不是,但是他却是7和13的倍数。(7×13=91)。热心网友 时间:2023-10-08 22:57
一百以内质数表,二十五个要记牢。热心网友 时间:2023-10-30 23:53
二三五七和十一,
十三后面是十七,
还有十九别忘记,
二三九, 三一七,
四一,四三,四十七,
五三九, 六一七,
七一,七三,七十九,
八三,*,九十七.
质数又称素数。一个大于1的自然数,除了1和它自身外,不能整除其他自然数的数叫做质数;否则称为合数。
质数数目计算:
尽管整个素数是无穷的,仍然有人会问“100,000以下有多少个素数?”,“一个随机的100位数多大可能是素数?”。素数定理可以回答此问题。
1、在一个大于1的数a和它的2倍之间(即区间(a, 2a]中)必存在至少一个素数。
2、存在任意长度的素数等差数列。
3、一个偶数可以写成两个合数之和,其中每一个合数都最多只有9个质因数。(挪威数学家布朗,1920年)
4、一个偶数必定可以写成一个质数加上一个合成数,其中合数的因子个数有上界。(瑞尼,1948年)
5、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为 (1 + 5)(中国潘承洞,1968年)
6、一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数。简称为 (1 + 2)
热心网友 时间:2023-10-30 23:53
2,3,5,7,11,13,17,19,
23,29,31,37,41,43,
47,53,59,61,67,71,
73,79,83,89,97 共25个
100以内质数口诀
二三五七和十一,
十三后面是十七,
还有十九别忘记,
二三九, 三一七,
四一,四三,四十七,
五三九, 六一七,
七一,七三,七十九,
八三,*,九十七.
扩展资料:
质数的由来:
1.费马数2^(2^n)+1
被称为“17世纪最伟大的法国数学家”的费马,也研究过质数的性质.他发现,设F(n)=2^(2^n)+1,则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=4294967297)。
他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数.这便是费马数.但是,就是在F5上出了问题!费马死后67年,25岁的瑞士数学家欧拉证明: F5=4294967297=641×6700417,它并非质数,而是一个合数!
更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数.目前由于平方开得较大,因而能够证明的也很少.现在数学家们取得Fn的最大值为:n=1495.这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数.质数和费马开了个大玩笑!这又是一个合情推理失败的案例!
2.梅森素数
17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1 ,当p是质数时,2^p-1是质数.他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数.p=2,3,5,7时,2^p-1都是素数,但p=11时,所得2047=23×89却不是素数.
还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证.梅森去世250年后,美国数学家科勒证明,2^67-1=193707721×761838257287,是一个合数.这是第九个梅森数.20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数.质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难.
现在,数学家找到的最大的梅森数是一个有9808357位的数:2^32582657-1.数学家虽然可以找到很大的质数,但质数的规律还是无法循通.
热心网友 时间:2023-10-30 23:54
二三五七和十一,热心网友 时间:2023-10-30 23:54
呃,这个其实很简单。100以内的就先把他们列出来(数学书上就有),首先偶数除0和2排除的所有偶数排除在外。然后把5的倍数,也就是个位上是0或5的数给排除。那么就很容易了,在把3的倍数排除,也就是把各个数位上的数相加,和能被三整除就是的3的倍数。这样,剩下就是质数(也就是素数)。但是其中有几个数比较特殊,比如:91。这个数看似2、3、5的倍数都不是,但是他却是7和13的倍数。(7×13=91)。热心网友 时间:2023-10-30 23:55
一百以内质数表,二十五个要记牢。