发布网友 发布时间:2022-04-27 11:12
共1个回答
热心网友 时间:2023-09-14 17:30
正弦、余弦的和差化积公式 指高中数学三角函数部分的一组恒等式 sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2] sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2] cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2] cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】 以上四组公式可以由积化和差公式推导得到 证明过程 sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程 因为sin(α+β)=sin αcos β+cos αsin β, sin(α-β)=sin αcos β-cos αsin β, 将以上两式的左右两边分别相加,得 sin(α+β)+sin(α-β)=2sin αcos β, 设α+β=θ,α-β=φ 那么 α=(θ+φ)/2, β=(θ-φ)/2 把α,β的值代入,即得 sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2] 编辑本段正切的和差化积 tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明) cotα±cotβ=sin(β±α)/(sinα·sinβ) tanα+cotβ=cos(α-β)/(cosα·sinβ) tanα-cotβ=-cos(α+β)/(cosα·sinβ) 证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ =(sinα·cosβ±cosα·sinβ)/(cosα·cosβ) =sin(α±β)/(cosα·cosβ)=右边 ∴等式成立 编辑本段注意事项 在应用和差化积时,必须是一次同名三角函数方可实行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次 口诀 正加正,正在前,余加余,余并肩 正减正,余在前,余减余,负正弦 反之亦然 生动的口诀:(和差化积)