问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

贴片电容选用一般规则?

发布网友 发布时间:2022-04-27 10:18

我来回答

5个回答

热心网友 时间:2023-09-12 08:57

  兄弟,加油~!
  MLCC(片状多层陶瓷电容)现在已经成为了电子电路最常用的元件之一.MLCC表面看来,非常简单,可是,很多情况下,设计工程师或生产、工艺人员对MLCC的认识却有不足的地方.以下谈谈MLCC选择及应用上的一些问题和注意事项.
  MLCC虽然是比较简单的,但是,也是失效率相对较高的一种器件.失效率高,一方面是MLCC结构固有的可靠性问题,另外还有选型问题以及应用问题.
  由于电容算是“简单”的器件,所以有的设计工程师由于不够重视,从而对MLCC的独有特性不了解.在理想化的情况下,电容选型时,主要考虑容量及耐压两个参数就够了.但是对于MLCC,仅仅考虑这两个参数是远远不够的.
  使用MLCC,不能不了解MLCC的不同材质和这些材质对应的性能.MLCC的材质有很多种,每种材质都有自身的独特性能特点.不了解这些,所选用的电容就很有可能满足不了电路要求.举例来说,MLCC常见的有C0G(也称NP0)材质,X7R材质,Y5V材质.C0G的工作温度范围和温度系数最好,在-55°C至+125°C的工作温度范围内时温度系数为0 ±30ppm/°C.X7R次之,在-55°C至+125°C的工作温度范围内时容量变化为±15%.Y5V的工作温度仅为-30°C至+85°C,在这个工作温度范围内时其容量变化可达-22%至+82%.当然,C0G、X7R、Y5V的成本也是依次减低的.在选型时,如果对工作温度和温度系数要求很低,可以考虑用Y5V的,但是一般情况下要用X7R的,要求更高时必须选择COG的.一般情况下,MLCC厂家都设计成使X7R、Y5V材质的电容在常温附近的容量最大,但是随着温度上升或下降,其容量都会下降.
  仅仅了解上面知识的还不够.由于C0G、X7R、Y5V的介质的介电常数是依次减少的,所以,同样的尺寸和耐压下,能够做出来的最大容量也是依次减少的.有的没经验的工程师,以为想要什么容量都有,选型时就会犯错误,选了不存在的规格.比如想用0603/C0G/25V/3300pF的电容,但是0603/C0G/25V的MLCC一般只做到1000pF.其实只要仔细看了厂家的选型手册,就不会犯这样的错误.另外,对于入门不久的设计工程师,对元件规格的数序(E12、E24等)没概念,会给出0.5uF之类的不存在的规格出来.即使是有经验的工程师,对于规格的压缩也没概念.比如说,在滤波电路上,原来有人用到了3.3uF的电容,他的电路也能用3.3uF的电容,但他有可能偏偏选了一个没人用过的4.7uF或2.2uF的电容规格.不看厂家选型手册选型的人,还会犯下面这种错误,比如选了一个0603/X7R/470pF/16V的电容,而事实上一般厂家0603/X7R/470pF的电容只生产50V及其以上的电压而不生产16V之类的电压了.
  另外注意片状电容的封装有两种表示方法,一种是英制表示法,一种是公制表示法.美国的厂家用英制的,日本厂家基本上都用公制的,而国产的厂家有用英制的也有用公制的.一个公司所用到的电容封装,只能统一用一种制式来表示,不能这个工程师用英制那个工程师用公制.否则会搞混乱.极端的情况下,还会弄错.比如说,英制的有0603的封装,公制的也有0603的封装,但是两者实际上是完全不同的尺寸的.英制的0603封装对应公制的是1608,而公制的0603封装对应英制的却是0201!其实英制封装的数字大约乘以2.5(前2位后2位分开乘)就成为了公制封装规格.现在流行的是用英制的封装表达法.比如我们常说的0402封装就是英制的表达法,其对应的公制封装为1005(1.0*0.5mm).
  另外,设计工程师除了要了解MLCC的温度性能外,还应该了解更多的性能.比如Y5V介质的电容,虽然容量很大,但是,这种铁电陶瓷有一个缺点,在就是其静态容量随其直流偏置工作电压的增大而减少,最大甚至会下降70%.比如一个Y5V/50V/10uF的电容,在50V的直流电压下,其容量可能只有3uF!当然,不同的厂家的特性有差异,有的下降可能没这么严重.如果你一定要用Y5V的电容,除了要知道其容量随温度的变化曲线图外,还必须向厂家索取其容量随直流偏置电压变化的曲线图(甚至是要容量温度直流偏置综合图).使用Y5V电容要有足够的电压降额.X7R的容量随其直流偏置工作电压的增大也减少,不过没有Y5V的那么明显.同时,MLCC尺寸越小,这种效应就越明显.
  不同的材质的频率特性也不同.设计师必须了解不同材质的不同频率特性.比如C0G(又称高频热补偿型介质)的高频特性好,X7R的次之,Y5V的差.在做平滑(电源滤波)用途时,要求容量尽量大,所以可用Y5V电容,也就是说,Y5V电容可以取代电解电容.在做旁路用途时,比如IC的VCC引脚旁的旁路电容,至少要选用X7R电容.而振荡电路则必须用C0G电容.由于Y5V的性能较差,我一般都是不推荐使用的,要求设计工程师尽量考虑用X7R电容(或X5R电容).如果对容量体积比要求高的场合,则考虑用钽电容而尽量避免用Y5V电容.当然,如果你们公司要求不高,还是可以考虑Y5V电容,但是要特别小心.
  一般说MLCC的ESL(等效串联电感)、ESR(等效串联电阻)小,是相对于电解电容(包括钽电解电容)而言的.事实上,高频时,MLCC的ESL、ESR不可以忽略.一般C0G电容的谐振点能达上百MHz,一般X7R电容的谐振点能达几十MHz,而Y5V电容的谐振点仅仅是数MHz甚至不到1MHz.谐振点意味着,超过了这个频率,电容已经不是电容特性了,而是电感特性了.如果想使MLCC用于更高频率,比如微波,那么,就必须用专门的微波材料和工艺制造的MLCC.微波电容要求ESL、ESR必须更小.
  MLCC一直在小型化的方向进展.现在0402的封装已经是主流产品.但是小型化可能带来其它的一些危害.事实上,不是所有的电子产品都是那么在意和欢迎小型化MLCC的.在意小型化的电子产品,比如手机、数码产品等等,这些产品成为MLCC小型化的主要推动力.对于MLCC厂家来说,小型化MLCC占有主要的出货量.但是从整个电子业界来说,还有很多电子设备,对小型化不是那么在乎,性能和可靠性才是关键考虑因素,MLCC小型化带来了可靠性的隐患.比如通信设备、医疗设备、工控设备、电源等.这些电子设备空间够大,对MLCC小型化不是很感兴趣;而且,这些电子设备不像个人消费品那样追赶时髦且更新换代快,而是更在乎长久使用的可靠性,所以对于元件的余量要求更高(为了保证可靠性,余量要大,所以尺寸更大的MLCC才满足要求.另外,更大的尺寸使得MLCC厂家在提高电容的可靠性上更有发挥的空间).这点恰好与MLCC厂家追求小型化的方向不一致.这是个矛盾.这些高可靠性要求的电子设备的特点是量不是很大,但是价格昂贵(个别种类电源除外),可靠性要求也高.如果是知名的电子设备厂,日子会好过一点,因为MLCC厂会为他们保存一些大尺寸的规格的MLCC生产.如果不是知名的电子设备厂,也不用那么悲观,毕竟,还有少数MLCC厂定位不同,依然会继续生产大尺寸的电容.所以,作为这种电子设备的厂家,要善于寻找定位于高性能高可靠的较大尺寸的MLCC厂家.但是有一个注意事项是,所选用的规格不可以是独家才有的规格,至少是有两家满足自己公司要求的MLCC厂家在生产这种规格.另外,对于小型化不影响性能和可靠性要求时,还是优先考虑小型化的M LCCC.
  有的公司在MLCC的应用上也会有一些误区.有人以为MLCC是很简单的元件,所以工艺要求不高.其实,MLCC是很脆弱的元件,应用时一定要注意.
  MLCC厂家在生产过程中,如果工艺不好,就有可能会有隐患.比如介质空洞、烧结纹裂、分层等都会带来隐患.这点只能通过筛选优秀的供应商来保证(后面还会谈到供应商选择问题).
  另外就是陶瓷本身的热脆性和机械应力脆性的故有可靠性,导致电子设备厂在使用MLCC时,使用不当也容易失效.
  MLCC现在做到几百层甚至上千层了,每层是微米级的厚度.所以稍微有点形变就容易使其产生裂纹.另外同样材质、尺寸和耐压下的MLCC,容量越高,层数就越多,每层也越薄,于是越容易断裂.另外一个方面是,相同材质、容量和耐压时,尺寸小的电容要求每层介质更薄,导致更容易断裂.裂纹的危害是漏电,严重时引起内部层间错位短路等安全问题.而且裂纹有一个很麻烦的问题是,有时比较隐蔽,在电子设备出厂检验时可能发现不了,到了客户端才正式暴露出来.所以防止MLCC产生裂纹意义重大.
  MLCC受到温度冲击时,容易从焊端开始产生裂纹.在这点上,小尺寸电容比大尺寸电容相对来说会好一点,其原理就是大尺寸的电容导热没这么快到达整个电容,于是电容本体的不同点的温差大,所以膨胀大小不同,从而产生应力.这个道理和倒入开水时厚的玻璃杯比薄玻璃杯更容易破裂一样.另外,在MLCC焊接过后的冷却过程中,MLCC和PCB的膨胀系数不同,于是产生应力,导致裂纹.要避免这个问题,回流焊时需要有良好的焊接温度曲线.如果不用回流焊而用波峰焊,那么这种失效会大大增加.MLCC更是要避免用烙铁手工焊接的工艺.然而事情总是没有那么理想.烙铁手工焊接有时也不可避免.比如说,对于PCB外发加工的电子厂家,有的产品量特少,贴片外协厂家不愿意接这种单时,只能手工焊接;样品生产时,一般也是手工焊接;特殊情况返工或补焊时,必须手工焊接;修理工修理电容时,也是手工焊接.无法避免地要手工焊接MLCC时,就要非常重视焊接工艺.
  首先必须告知工艺和生产人员电容热失效问题,让其思想上高度重视这个问题.其次,必须由专门的熟练工人焊接.还要在焊接工艺上严格要求,比如必须用恒温烙铁,烙铁不超过315°C(要防止生产工人图快而提高焊接温度),焊接时间不超过3秒选择合适的焊焊剂和锡膏,要先清洁焊盘,不可以使MLCC受到大的外力,注意焊接质量,等等.最好的手工焊接是先让焊盘上锡,然后烙铁在焊盘上使锡融化,此时再把电容放上去,烙铁在整个过程中只接触焊盘不接触电容(可移动靠近),之后用类似方法(给焊盘上的镀锡垫层加热而不是直接给电容加热)焊另一头.
  机械应力也容易引起MLCC产生裂纹.由于电容是长方形 的(和PCB平行的面),而且短的边是焊端,所以自然是长的那边受到力时容易出问题.于是,排板时要考虑受力方向.比如分板时的变形方向于电容的方向的关系.在生产过程中,凡是PCB可能产生较大形变的地方都尽量不要放电容.比如PCB定位铆接、单板测试时测试点机械接触等等都会产生形变.另外半成品PCB板不能直接叠放.等等.
  下面谈谈MLCC的厂家选择与样品认证.
  MLCC作为相对低端的元件,欧美厂家一般不太愿意生产了或被日本品牌收购了.美国只剩下极少数的厂家还在生产MLCC,但是市场占有量少,货期长.所以,MLCC做得最好的是日本品牌.当然,台湾和*也有一些知名厂家的MLCC市场占有率不错.在普通的规格上,台湾和*的名牌MLCC的技术和质量差不多向日本的厂家靠拢了.但是如果要用一些技术和质量更优良的MLCC,可能只能选择美国和日本的品牌.总体来说,MLCC可供选择的厂家很多,由于MLCC价格不高,所以,选择知名企业一般公司还是很乐意的.如果选择的是一流企业的产品,那用起来自然是省心.但是,如果对一个品牌的MLCC质量不放心,或不是一流企业,那么选择供应商时就必须对他们的产品进行认证.电容不贵,样品数量可以多要点.要测试样品的温度特性、频率特性、直流偏置电压特性等等.有的参数自己的公司测不了,可以到供应商处测,或让他们出测试报告.事实上,MLCC的可靠性才是最关键的.通过上面的内容可知,MLCC的失效主要是热应力失效和机械应力失效.那么,样品也重点要测这些性能:抗热冲击和抗弯曲能力测试.注意,产生裂纹时,电容的容量等普通参数可能还是好的.这时主要是要测漏电(特别是有潮气进入时)才能测出来.
  心血啊,希望能帮到您~!

热心网友 时间:2023-09-12 08:57

兄弟,加油~,
MLCC(片状多层陶瓷电容)现在已经成为了电子电路最常用的元件之一.MLCC表面看来,非常简单,可是,很多情况下,设计工程师或生产、工艺人员对MLCC的认识却有不足的地方.以下谈谈MLCC选择及应用上的一些问题和注意事项.
MLCC虽然是比较简单的,但是,也是失效率相对较高的一种器件.失效率高,一方面是MLCC结构固有的可靠性问题,另外还有选型问题以及应用问题.
由于电容算是“简单”的器件,所以有的设计工程师由于不够重视,从而对MLCC的独有特性不了解.在理想化的情况下,电容选型时,主要考虑容量及耐压两个参数就够了.但是对于MLCC,仅仅考虑这两个参数是远远不够的.
使用MLCC,不能不了解MLCC的不同材质和这些材质对应的性能.MLCC的材质有很多种,每种材质都有自身的独特性能特点.不了解这些,所选用的电容就很有可能满足不了电路要求.举例来说,MLCC常见的有C0G(也称NP0)材质,X7R材质,Y5V材质.C0G的工作温度范围和温度系数最好,在-55°C至+125°C的工作温度范围内时温度系数为0 ±30ppm/°C.X7R次之,在-55°C至+125°C的工作温度范围内时容量变化为±15%.Y5V的工作温度仅为-30°C至+85°C,在这个工作温度范围内时其容量变化可达-22%至+82%.当然,C0G、X7R、Y5V的成本也是依次减低的.在选型时,如果对工作温度和温度系数要求很低,可以考虑用Y5V的,但是一般情况下要用X7R的,要求更高时必须选择COG的.一般情况下,MLCC厂家都设计成使X7R、Y5V材质的电容在常温附近的容量最大,但是随着温度上升或下降,其容量都会下降.
仅仅了解上面知识的还不够.由于C0G、X7R、Y5V的介质的介电常数是依次减少的,所以,同样的尺寸和耐压下,能够做出来的最大容量也是依次减少的.有的没经验的工程师,以为想要什么容量都有,选型时就会犯错误,选了不存在的规格.比如想用0603/C0G/25V/3300pF的电容,但是0603/C0G/25V的MLCC一般只做到1000pF.其实只要仔细看了厂家的选型手册,就不会犯这样的错误.另外,对于入门不久的设计工程师,对元件规格的数序(E12、E24等)没概念,会给出0.5uF之类的不存在的规格出来.即使是有经验的工程师,对于规格的压缩也没概念.比如说,在滤波电路上,原来有人用到了3.3uF的电容,他的电路也能用3.3uF的电容,但他有可能偏偏选了一个没人用过的4.7uF或2.2uF的电容规格.不看厂家选型手册选型的人,还会犯下面这种错误,比如选了一个0603/X7R/470pF/16V的电容,而事实上一般厂家0603/X7R/470pF的电容只生产50V及其以上的电压而不生产16V之类的电压了.
另外注意片状电容的封装有两种表示方法,一种是英制表示法,一种是公制表示法.美国的厂家用英制的,日本厂家基本上都用公制的,而国产的厂家有用英制的也有用公制的.一个公司所用到的电容封装,只能统一用一种制式来表示,不能这个工程师用英制那个工程师用公制.否则会搞混乱.极端的情况下,还会弄错.比如说,英制的有0603的封装,公制的也有0603的封装,但是两者实际上是完全不同的尺寸的.英制的0603封装对应公制的是1608,而公制的0603封装对应英制的却是0201,其实英制封装的数字大约乘以2.5(前2位后2位分开乘)就成为了公制封装规格.现在流行的是用英制的封装表达法.比如我们常说的0402封装就是英制的表达法,其对应的公制封装为1005(1.0*0.5mm).
另外,设计工程师除了要了解MLCC的温度性能外,还应该了解更多的性能.比如Y5V介质的电容,虽然容量很大,但是,这种铁电陶瓷有一个缺点,在就是其静态容量随其直流偏置工作电压的增大而减少,最大甚至会下降70%.比如一个Y5V/50V/10uF的电容,在50V的直流电压下,其容量可能只有3uF,当然,不同的厂家的特性有差异,有的下降可能没这么严重.如果你一定要用Y5V的电容,除了要知道其容量随温度的变化曲线图外,还必须向厂家索取其容量随直流偏置电压变化的曲线图(甚至是要容量温度直流偏置综合图).使用Y5V电容要有足够的电压降额.X7R的容量随其直流偏置工作电压的增大也减少,不过没有Y5V的那么明显.同时,MLCC尺寸越小,这种效应就越明显.
不同的材质的频率特性也不同.设计师必须了解不同材质的不同频率特性.比如C0G(又称高频热补偿型介质)的高频特性好,X7R的次之,Y5V的差.在做平滑(电源滤波)用途时,要求容量尽量大,所以可用Y5V电容,也就是说,Y5V电容可以取代电解电容.在做旁路用途时,比如IC的VCC引脚旁的旁路电容,至少要选用X7R电容.而振荡电路则必须用C0G电容.由于Y5V的性能较差,我一般都是不推荐使用的,要求设计工程师尽量考虑用X7R电容(或X5R电容).如果对容量体积比要求高的场合,则考虑用钽电容而尽量避免用Y5V电容.当然,如果你们公司要求不高,还是可以考虑Y5V电容,但是要特别小心.
一般说MLCC的ESL(等效串联电感)、ESR(等效串联电阻)小,是相对于电解电容(包括钽电解电容)而言的.事实上,高频时,MLCC的ESL、ESR不可以忽略.一般C0G电容的谐振点能达上百MHz,一般X7R电容的谐振点能达几十MHz,而Y5V电容的谐振点仅仅是数MHz甚至不到1MHz.谐振点意味着,超过了这个频率,电容已经不是电容特性了,而是电感特性了.如果想使MLCC用于更高频率,比如微波,那么,就必须用专门的微波材料和工艺制造的MLCC.微波电容要求ESL、ESR必须更小.
MLCC一直在小型化的方向进展.现在0402的封装已经是主流产品.但是小型化可能带来其它的一些危害.事实上,不是所有的电子产品都是那么在意和欢迎小型化MLCC的.在意小型化的电子产品,比如手机、数码产品等等,这些产品成为MLCC小型化的主要推动力.对于MLCC厂家来说,小型化MLCC占有主要的出货量.但是从整个电子业界来说,还有很多电子设备,对小型化不是那么在乎,性能和可靠性才是关键考虑因素,MLCC小型化带来了可靠性的隐患.比如通信设备、医疗设备、工控设备、电源等.这些电子设备空间够大,对MLCC小型化不是很感兴趣;而且,这些电子设备不像个人消费品那样追赶时髦且更新换代快,而是更在乎长久使用的可靠性,所以对于元件的余量要求更高(为了保证可靠性,余量要大,所以尺寸更大的MLCC才满足要求.另外,更大的尺寸使得MLCC厂家在提高电容的可靠性上更有发挥的空间).这点恰好与MLCC厂家追求小型化的方向不一致.这是个矛盾.这些高可靠性要求的电子设备的特点是量不是很大,但是价格昂贵(个别种类电源除外),可靠性要求也高.如果是知名的电子设备厂,日子会好过一点,因为MLCC厂会为他们保存一些大尺寸的规格的MLCC生产.如果不是知名的电子设备厂,也不用那么悲观,毕竟,还有少数MLCC厂定位不同,依然会继续生产大尺寸的电容.所以,作为这种电子设备的厂家,要善于寻找定位于高性能高可靠的较大尺寸的MLCC厂家.但是有一个注意事项是,所选用的规格不可以是独家才有的规格,至少是有两家满足自己公司要求的MLCC厂家在生产这种规格.另外,对于小型化不影响性能和可靠性要求时,还是优先考虑小型化的M LCCC.
有的公司在MLCC的应用上也会有一些误区.有人以为MLCC是很简单的元件,所以工艺要求不高.其实,MLCC是很脆弱的元件,应用时一定要注意.
MLCC厂家在生产过程中,如果工艺不好,就有可能会有隐患.比如介质空洞、烧结纹裂、分层等都会带来隐患.这点只能通过筛选优秀的供应商来保证(后面还会谈到供应商选择问题).
另外就是陶瓷本身的热脆性和机械应力脆性的故有可靠性,导致电子设备厂在使用MLCC时,使用不当也容易失效.
MLCC现在做到几百层甚至上千层了,每层是微米级的厚度.所以稍微有点形变就容易使其产生裂纹.另外同样材质、尺寸和耐压下的MLCC,容量越高,层数就越多,每层也越薄,于是越容易断裂.另外一个方面是,相同材质、容量和耐压时,尺寸小的电容要求每层介质更薄,导致更容易断裂.裂纹的危害是漏电,严重时引起内部层间错位短路等安全问题.而且裂纹有一个很麻烦的问题是,有时比较隐蔽,在电子设备出厂检验时可能发现不了,到了客户端才正式暴露出来.所以防止MLCC产生裂纹意义重大.
MLCC受到温度冲击时,容易从焊端开始产生裂纹.在这点上,小尺寸电容比大尺寸电容相对来说会好一点,其原理就是大尺寸的电容导热没这么快到达整个电容,于是电容本体的不同点的温差大,所以膨胀大小不同,从而产生应力.这个道理和倒入开水时厚的玻璃杯比薄玻璃杯更容易破裂一样.另外,在MLCC焊接过后的冷却过程中,MLCC和PCB的膨胀系数不同,于是产生应力,导致裂纹.要避免这个问题,回流焊时需要有良好的焊接温度曲线.如果不用回流焊而用波峰焊,那么这种失效会大大增加.MLCC更是要避免用烙铁手工焊接的工艺.然而事情总是没有那么理想.烙铁手工焊接有时也不可避免.比如说,对于PCB外发加工的电子厂家,有的产品量特少,贴片外协厂家不愿意接这种单时,只能手工焊接;样品生产时,一般也是手工焊接;特殊情况返工或补焊时,必须手工焊接;修理工修理电容时,也是手工焊接.无法避免地要手工焊接MLCC时,就要非常重视焊接工艺.
首先必须告知工艺和生产人员电容热失效问题,让其思想上高度重视这个问题.其次,必须由专门的熟练工人焊接.还要在焊接工艺上严格要求,比如必须用恒温烙铁,烙铁不超过315°C(要防止生产工人图快而提高焊接温度),焊接时间不超过3秒选择合适的焊焊剂和锡膏,要先清洁焊盘,不可以使MLCC受到大的外力,注意焊接质量,等等.最好的手工焊接是先让焊盘上锡,然后烙铁在焊盘上使锡融化,此时再把电容放上去,烙铁在整个过程中只接触焊盘不接触电容(可移动靠近),之后用类似方法(给焊盘上的镀锡垫层加热而不是直接给电容加热)焊另一头.
机械应力也容易引起MLCC产生裂纹.由于电容是长方形 的(和PCB平行的面),而且短的边是焊端,所以自然是长的那边受到力时容易出问题.于是,排板时要考虑受力方向.比如分板时的变形方向于电容的方向的关系.在生产过程中,凡是PCB可能产生较大形变的地方都尽量不要放电容.比如PCB定位铆接、单板测试时测试点机械接触等等都会产生形变.另外半成品PCB板不能直接叠放.等等.
下面谈谈MLCC的厂家选择与样品认证.
MLCC作为相对低端的元件,欧美厂家一般不太愿意生产了或被日本品牌收购了.美国只剩下极少数的厂家还在生产MLCC,但是市场占有量少,货期长.所以,MLCC做得最好的是日本品牌.当然,台湾和*也有一些知名厂家的MLCC市场占有率不错.在普通的规格上,台湾和*的名牌MLCC的技术和质量差不多向日本的厂家靠拢了.但是如果要用一些技术和质量更优良的MLCC,可能只能选择美国和日本的品牌.总体来说,MLCC可供选择的厂家很多,由于MLCC价格不高,所以,选择知名企业一般公司还是很乐意的.如果选择的是一流企业的产品,那用起来自然是省心.但是,如果对一个品牌的MLCC质量不放心,或不是一流企业,那么选择供应商时就必须对他们的产品进行认证.电容不贵,样品数量可以多要点.要测试样品的温度特性、频率特性、直流偏置电压特性等等.有的参数自己的公司测不了,可以到供应商处测,或让他们出测试报告.事实上,MLCC的可靠性才是最关键的.通过上面的内容可知,MLCC的失效主要是热应力失效和机械应力失效.那么,样品也重点要测这些性能:抗热冲击和抗弯曲能力测试.注意,产生裂纹时,电容的容量等普通参数可能还是好的.这时主要是要测漏电(特别是有潮气进入时)才能测出来。

热心网友 时间:2023-09-12 08:58

MLCC(片状多层陶瓷电容)现在已经成为了电子电路最常用的元件之一.MLCC表面看来,非常简单,可是,很多情况下,设计工程师或生产、工艺人员对MLCC的认识却有不足的地方.以下谈谈MLCC选择及应用上的一些问题和注意事项.

1、MLCC虽然是比较简单的,但是,也是失效率相对较高的一种器件.失效率高,一方面是MLCC结构固有的可靠性问题,另外还有选型问题以及应用问题.

由于电容算是“简单”的器件,所以有的设计工程师由于不够重视,从而对MLCC的独有特性不了解.在理想化的情况下,电容选型时,主要考虑容量及耐压两个参数就够了.但是对于MLCC,仅仅考虑这两个参数是远远不够的.

2、对于入门不久的设计工程师,对元件规格的数序(E12、E24等)没概念,会给出0.5uF之类的不存在的规格出来.即使是有经验的工程师,对于规格的压缩也没概念.比如说,在滤波电路上,原来有人用到了3.3uF的电容,他的电路也能用3.3uF的电容,但他有可能偏偏选了一个没人用过的4.7uF或2.2uF的电容规格.不看厂家选型手册选型的人,还会犯下面这种错误,比如选了一个0603/X7R/470pF/16V的电容,而事实上一般厂家0603/X7R/470pF的电容只生产50V及其以上的电压而不生产16V之类的电压了.

3、另外注意片状电容的封装有两种表示方法,一种是英制表示法,一种是公制表示法.美国的厂家用英制的,日本厂家基本上都用公制的,而国产的厂家有用英制的也有用公制的.一个公司所用到的电容封装,只能统一用一种制式来表示,不能这个工程师用英制那个工程师用公制.否则会搞混乱

4、另外,设计工程师除了要了解MLCC的温度性能外,还应该了解更多的性能.比如Y5V介质的电容,虽然容量很大,但是,这种铁电陶瓷有一个缺点,在就是其静态容量随其直流偏置工作电压的增大而减少,最大甚至会下降70%.比如一个Y5V/50V/10uF的电容,在50V的直流电压下,其容量可能只有3uF!

5、不同的材质的频率特性也不同.设计师必须了解不同材质的不同频率特性.比如C0G(又称高频热补偿型介质)的高频特性好,X7R的次之,Y5V的差.在做平滑(电源滤波)用途时,要求容量尽量大,所以可用Y5V电容,也就是说,Y5V电容可以取代电解电容.

6、一般说MLCC的ESL(等效串联电感)、ESR(等效串联电阻)小,是相对于电解电容(包括钽电解电容)而言的.事实上,高频时,MLCC的ESL、ESR不可以忽略.一般C0G电容的谐振点能达上百MHz,一般X7R电容的谐振点能达几十MHz,而Y5V电容的谐振点仅仅是数MHz甚至不到1MHz.谐振点意味着,超过了这个频率,电容已经不是电容特性了,而是电感特性了.如果想使MLCC用于更高频率,比如微波,那么,就必须用专门的微波材料和工艺制造的MLCC.微波电容要求ESL、ESR必须更小.

热心网友 时间:2023-09-12 08:59

一般看容值,耐压,大小(封装)看你的电路功能了

热心网友 时间:2023-09-12 08:59

关键参数,耐压值,温度,ESR,充电时间
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
北京注册成立一个公司需要多少钱 北京公司都是什么 手机导航地图语音怎么下载 如何分别真金和仿金首饰 怎样区分真金和仿金首饰呢 小学生新年晚会主持人的串词!!(不要太多)急 大大后天就需要了!!!_百度... 周年晚会策划公司 奥格瑞玛传送门大厅在哪 奥格瑞玛传送门大厅怎么走 锻炼颈椎的几个动作 水多久能结冰 冰能在多长时间内形成 并联MLCC电容作用是什么?很多固态都有并联 贴片陶瓷电容(MLCC)加直流电压后容量反而变大,和MLCC的DC偏置特性相反。 MLCC陶瓷陶瓷贴片电容哪个品牌的质量较好? 固态mlcc大容量陶瓷电容 常用的MLCC有哪些? mlcc是什么电容 关之琳参加过哪些慈善活动? 关之琳出席过得社会活动你知道多少? 刻意装嫩的关之琳穿得再年轻漂亮,看什么部位也嫩不了? 关之琳一点不害羞,穿睡衣套装见人,她的气质怎么样? 关之琳身穿一袭花裙尽显迷人气质,你感觉她的时尚感如何? 关之琳代言的家纺品牌,今年是其15周年的,叫什么? 关之琳真挺招摇的,印花裙也敢穿,但看着还挺年轻,对此你怎么看? 关之琳1.5亿的豪宅曝光,你羡慕这样的生活吗? 59岁关之琳放下“美女包袱”,大吃垃圾食品,豪宅意外曝光,你怎么看? 关之琳一身围棋色长裙出门,手拿包看着好似围棋子,你认为呢? 关之琳年轻时貌美如花,她现在生活过得怎么样? 关之琳代言过什么品牌? 关之琳有哪些时尚的搭配很吸睛? 关之琳 祛痘代言的产品名字叫什么 贸易是干什么的 请问各位前辈,一般贸易是什么意思 每天认真刷牙依旧无法祛黄,到底应该如何挑选牙膏? 牙膏什么牌子最好去黄 什么牙膏好用啊,能去黄的 有去黄效果比较好的牙膏么? 什么牙膏去黄牙效果最好? 黑人牙膏有助于去黄吗?小苏打呢 魅族15P上手测评,拍照功能有多强 这张K线图怎么看,那三条线代表什么,还有一格一格怎么理解 农行k宝8位初始密码是多少 2021导游职业发展怎么样? 导游发展前景怎么样?工资高吗? 导游在未来的前景怎么样? 导游就业前景如何? 农行k宝原始密码是八个1还是八个0? 大专生 当导游前景怎么样? 取得导游证,职业前景如何? 导游发展前景 导游这个专业就业前景咋样?