发布网友 发布时间:2022-04-28 11:52
共2个回答
懂视网 时间:2022-05-10 08:56
Matplotlib是一个Python 2D绘图库,它可以在各种平台上以各种硬拷贝格式和交互式环境生成出具有出版品质的图形。上一篇我们讲解到Matplotlib 中的图例,标题和标签介绍,今天我们开始正式画图。这个教程中我们会涉及条形图、直方图和散点图。我们先来看条形图:
条形图
import matplotlib.pyplot as plt plt.bar([1,3,5,7,9],[5,2,7,8,2], label="Example one") plt.bar([2,4,6,8,10],[8,6,2,5,6], label="Example two", color='g') plt.legend() plt.xlabel('bar number') plt.ylabel('bar height') plt.title('Epic Graph Another Line! Whoa') plt.show()
plt.bar为我们创建条形图。 如果你没有明确选择一种颜色,那么虽然做了多个图,所有的条看起来会一样。 这让我们有机会使用一个新的 Matplotlib 自定义选项。 你可以在任何类型的绘图中使用颜色,例如g为绿色,b为蓝色,r为红色,等等。 你还可以使用十六进制颜色代码,如#191970。
接下来,我们会讲解直方图。 直方图非常像条形图,倾向于通过将区段组合在一起来显示分布。 这个例子可能是年龄的分组,或测试的分数。 我们并不是显示每一组的年龄,而是按照 20 ~ 25,25 ~ 30… 等等来显示年龄。 这里有一个例子:
直方图
import matplotlib.pyplot as plt population_ages = [22,55,62,45,21,22,34,42,42,4,99,102,110,120,121,122,130,111,115,112,80,75,65,54,44,43,42,48] bins = [0,10,20,30,40,50,60,70,80,90,100,110,120,130] plt.hist(population_ages, bins, histtype='bar', rwidth=0.8) plt.xlabel('x') plt.ylabel('y') plt.title('Interesting Graph Check it out') plt.legend() plt.show()
产生的图表为:
对于plt.hist,你首先需要放入所有的值,然后指定放入哪个桶或容器。 在我们的例子中,我们绘制了一堆年龄,并希望以 10 年的增量来显示它们。 我们将条形的宽度设为 0.8,但是如果你想让条形变宽,或者变窄,你可以选择其他的宽度。
接下来,我们将介绍散点图。散点图通常用于比较两个变量来寻找相关性或分组,如果你在 3 维绘制则是 3 个。
散点图
散点图的一些示例代码:
import matplotlib.pyplot as plt x = [1,2,3,4,5,6,7,8] y = [5,2,4,2,1,4,5,2] plt.scatter(x,y, label='skitscat', color='k', s=25, marker="o") plt.xlabel('x') plt.ylabel('y') plt.title('Interesting Graph Check it out') plt.legend() plt.show()
结果为:
Tip:
plt.scatter不仅允许我们绘制x和y,而且还可以让我们决定所使用的标记颜色,大小和类型。
热心网友 时间:2022-05-10 06:04
摘要散点图,带边界的气泡图,带线性回归最佳拟合线的散点图,抖动图,计数图,边缘直方图,边缘箱形图,矩阵图,发散型条形图咨询记录 · 回答于2021-04-30列举一些可视化图形种类,并说明相应的类来绘制散点图,带边界的气泡图,带线性回归最佳拟合线的散点图,抖动图,计数图,边缘直方图,边缘箱形图,矩阵图,发散型条形图散点图也就是Scatteplot,是用于研究两个变量之间关系的经典和基本图。如果数据中有多个组,则可能需要以不同颜色可视化每个组。在Matplotlib,你可以方便地使用。能告诉我16 17 18选什么吗是有多选吧18选A17 ABC16应该是B