中心极限定理提示了什么结论?与实际情形是否相符?
发布网友
发布时间:2022-04-28 22:42
我来回答
共1个回答
热心网友
时间:2022-06-24 10:59
不好意思,告诉你答案是在害您,为了您的学业成绩,我只能告诉您知识点
从整个学科上来看,高数实际上是围绕着极限、导数和积分这三种基本的运算展开的。对于每一种运算,我们首先要掌握它们主要的计算方法;熟练掌握计算方法后,再思考利用这种运算我们还可以解决哪些问题,比如会计算极限以后:那么我们就能解决函数的连续性,函数间断点的分类,导数的定义这些问题。这样一梳理,整个高数的逻辑体系就会比较清晰。
极限部分:
极限的计算方法很多,总结起来有十多种,这里我们只列出主要的:四则运算,等价无穷小替换,洛必达法则,重要极限,泰勒公式,中值定理,夹*定理,单调有界收敛定理。每种方法具体的形式教材上都有详细的讲述,考生可以自己回顾一下,不太清晰的地方再翻到对应的章节看一看。
会计算极限之后,我们来说说直接通过极限定义的基本概念:
通过极限,我们定义了函数的连续性:函数在处连续的定义是,根据极限的定义,我们知道该定义又等价于。所以讨论函数的连续性就是计算极限。然后是间断点的分类,具体标准如下:
从中我们也可以看出,讨论函数间断点的分类,也仅需要计算左右极限。
再往后就是导数的定义了,函数在处可导的定义是极限存在,也可以写成极限存在。这里的极限式与前面相比要复杂一点,但本质上是一样的。最后还有可微的定义,函数在处可微的定义是存在只与有关而与 无关的常数使得时,有,其中。直接利用其定义,我们可以证明函数在一点可导和可微是等价的,它们都强于函数在该点连续。
以上就是极限这个体系下主要的知识点。
导数部分:
导数可以通过其定义计算,比如对分段函数在分段点上的导数。但更多的时候,我们是直接通过各种求导法则来计算的。主要的求导法则有下面这些:四则运算,复合函数求导法则,反函数求导法则,变上限积分求导。其中变上限积分求导公式本质上应该是积分学的内容,但出题的时候一般是和导数这一块的知识点一起出的,所以我们就把它归到求导法则里面了。能熟练运用这些基本的求导法则之后,我们还需要掌握几种特殊形式的函数导数的计算:隐函数求导,参数方程求导。我们对导数的要求是不能有不会算的导数。这一部分的题目往往不难,但计算量比较大,需要考生有较高的熟练度。
然后是导数的应用。导数主要有如下几个方面的应用:切线,单调性,极值,拐点。每一部分都有一系列相关的定理,考生自行回顾一下。这中间导数与单调性的关系是核心的考点,考试在考查这一块时主要有三种考法:①求单调区间或证明单调性;②证明不等式;③讨论方程根的个数。同时,导数与单调性的关系还是理解极值与拐点部分相关定理的基础。另外,数学三的考生还需要注意导数的经济学应用;数学一和数学二的考生还要掌握曲率的计算公式。
积分部分:
一元函数积分学首先可以分成不定积分和定积分,其中不定积分是计算定积分的基础。对于不定积分,我们主要掌握它的计算方法:第一类换元法,第二类换元法,分部积分法。这三种方法要融会贯通,掌握各种常见形式函数的积分方法。熟练掌握不定积分的计算技巧之后再来看一看定积分。定积分的定义考生需要稍微注意一下,考试对定积分的定义的要求其实就是两个方面:会用定积分的定义计算一些简单的极限;理解微元法(分割、近似、求和、取极限)。至于可积性的严格定义,考生没有必要掌握。然后是定积分这一块相关的定理和性质,这中间我们就提醒考生注意两个定理:积分中值定理和微积分基本定理。这两个定理的条件要记清楚,证明过程也要掌握,考试都直接或间接地考过。至于定积分的计算,我们主要的方法是利用牛顿—莱布尼兹公式借助不定积分进行计算,当然还可以利用一些定积分的特殊性质(如对称区间上的积分)。一般来说,只要不定积分的计算没问题,定积分的计算也就不成问题。定积分之后还有个广义积分,它实际上就是把积分过程和求极限的过程结合起来了。考试对这一部分的要求不太高,只要掌握常见的广义积分收敛性的判别,再会进行一些简单的计算就可以了。
会计算积分了,再来看一看定积分的应用。定积分的应用分为几何应用和物理应用。其中几何应用包括平面图形面积的计算,简单的几何体(主要是旋转体)体积的计算,曲线弧长的计算,旋转曲面面积的计算。物理应用主要是一些常见物理量的计算,包括功,压力,质心,引力,转动惯量等。其中数学一和数学二的考生需要全部掌握;数学三的考生只需掌握平面图形面积的计算,简单的几何体(主要是旋转体)体积的计算。这一部分题目的综合性往往比较强,对考生综合能力要求较高。
这就是高等数学整个学科从三种基本运算的角度梳理出来的主要知识点。除此之外,考生需要掌握的知识点还有多元函数微积分,它实际上是将一元函数中的极限,连续,可导,可微,积分等概念推广到了多元函数的情况,考生可以按照上面一样的思路来总结。另外还有两章:级数、微分方程。它们可以看做是对前面知识点综合的应用。比如微分方程,它实际上就是积分学的推广,解微分方程就是求积分。而级数则是对极限,导数和积分各种知识的综合应用。追问你说的这些难道书上没有吗?书我看完了,也根据这个问题反复翻阅了书了。我只是想知道“与实际情形是否相符?”该怎么回答才准确。真的是自以为是。你以为来着问问题的都成什么了。你答不上就别答。不知道就上百度知道提问,何必逞能,还跑来答一个。真心搞笑,你也不嫌丢人。
概率论与数理统计 第五章 大数定律及中心极限定理
还有更为一般的结论:只要随机变量相互独立,每个随机变量对和的影响都是微笑的,哪怕它们的分布类型不同,其和标准化后都有标准正态的极限分不。中心极限定理的直观意义:中心极限定理在实际应用中有如下三种形式:定理2 (棣莫弗-拉普拉斯中心极限定理) :二项分布的正态近似。中心极限定理的结论更为...
中心极限定理是如何证明的? 如题.数理统计书中说证明较复杂,略去._百 ...
那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理. 二、中心极限定理 设是独立随机变量序列,假设存在,若对于任意的,成立 称服从中心极...
大数规律的具体是什么以及它的应用?
大数法则 大数法则又称"大数定律"或"平均法则"。人们在长期的实践中发现,在随机现象的大量重复中往往出现几乎必然的规律,即大数法则。此法则的意义是:风险单位数量愈多,实际损失的结果会愈接近从无限单位数量得出的预期损失可能的结果。来个通俗点的说明。。我们用掷硬币来说明大数法则,大家都知道...
试比较独立同分布情形下的大数定律和中心极限定理的结论,二者有何联系...
式子上看,两者很接近,但是其实他们所表达的东西不一样。大数定理是在当时间发生次数趋近无穷之后,强调样本平均数会依概率收敛与原分布的期望,比如投一枚硬币正反两面都可以,正面记为1,反面为0,那么期望为0.5。当次数无穷之后(或者理解为很大)那么那么多时间的平均期望会离0.5非常近。中心极限定理...
脱落和剔除的定义是什么?
脱落病例指的是填写了知情同意书并筛选合格进入临床试验但没有完成临床试验全程的观察的病例。脱落的原因很多,可能因为不良事件、患者失访、缺乏疗效、患者主动撤回知情同意书等等。 剔除病例指的是违反方案操作的病例,譬如不符合入选标准,符合剔除标准,违反方案合并用药的规定,未按规定用药以致影响药物...
如何证明中心极限定理?
七、林德贝尔格-费勒中心极限定理 引理1 对及任意的,证明:记,设,由于因此, ,其次,对,用归纳法即得. 由于,因此,对也成立. 引理2 对于任意满足及的复数,有证明:显然因此,由归纳法可证结论成立. 引理3 若是特征函数,则也是特征函数,特别地证明 定义随机变量其中相互独立,均有特征函数,服从参数的普哇松分布,且...
谁能给出中心极限定理(CLT)的完整证明?
七、林德贝尔格-费勒中心极限定理 引理1 对及任意的, 证明:记,设,由于 因此, ,其次,对, 用归纳法即得. 由于,因此,对也成立. 引理2 对于任意满足及的复数,有 证明:显然 因此, 由归纳法可证结论成立. 引理3 若是特征函数,则也是特征函数,特别地 证明 定义随机变量 其中相互独立,均有特征函数,服从参数的...
什么是概率论中的大数定律?
还有更为一般的结论:只要随机变量相互独立,每个随机变量对和的影响都是微笑的,哪怕它们的分布类型不同,其和标准化后都有标准正态的极限分不。中心极限定理的直观意义:中心极限定理在实际应用中有如下三种形式:定理2 (棣莫弗-拉普拉斯中心极限定理) :二项分布的正态近似。中心极限定理的结论更为...