相似三角形怎么学,主要概念是什么
发布网友
发布时间:2022-04-28 22:16
我来回答
共1个回答
热心网友
时间:2022-06-23 22:59
相似三角形的定义:
对应角相等、对应边成比例的两个三角形叫做相似三角形。
如果三边分别对应A,B,C和a,b,c:那么:
A/a=B/b=C/c
即三边边长对应比例相同。
【这是初中数学知识】
平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)
定义判定
对应角相等,对应边成比例的两个三角形叫做相似三角形。
判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(AA)
判定定理2:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似(SAS)
判定定理3:如果两个三角形的三组对应边成比例,那么这两个三角形相似(SSS)
判定定理4:两三角形三边对应平行,则两三角形相似。
判定定理5:两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。
其他判定:由角度比转化为线段比:h1/h2=Sabc
判定定理基本判定
(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)
(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)
(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。
直角三角形判定
(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
一定相似
1.两个全等的三角形
全等三角形是特殊的相似三角形,相似比为1:1
2.任意一个顶角或底角相等的两个等腰三角形
两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。
3.两个等边三角形
(两个等边三角形,三个内角都是60度,且边边相等,所以相似)
4.直角三角形中由斜边的高形成的三个三角形
由于斜边的高形成两个直角,再加上一个公共的角,所以相似。
2性质定理编辑
(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
3定理推论编辑
推论一:顶角或底角相等的两个等腰三角形相似。
推论二:腰和底对应成比例的两个等腰三角形相似。
推论三:有一个锐角相等的两个直角三角形相似。
推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
性质
1.相似三角形对应角相等,对应边成正比例。
2.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
3.相似三角形周长的比等于相似比。
4.相似三角形面积的比等于相似比的平方。
5.相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方
6.若a/b =b/c,即b²=ac,b叫做a,c的比例中项
7.c/d=a/b 等同于ad=bc.
8.不必是在同一平面内的三角形里
(1)相似三角形对应角相等,对应边成比例.
(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
(3)相似三角形周长的比等于相似比
如果有帮到您 请给予好评 谢谢拉#^_^#祝您愉快