卷积 什么意思10
发布网友
发布时间:2023-10-12 18:35
我来回答
共2个回答
热心网友
时间:2024-12-05 07:04
卷积
convolution
分析数学中一种重要的运算。设f(x), g(x)是R1上的两个可积函数,作积分:
可以证明,关于几乎所有的x∈(-∞,∞) ,上述积分是存在的。这样,随着x的不同取值 ,这个积分就定义了一个新函数h(x),称为f与g的卷积,记为h(x)=(f *g)(x)。容易验证,(f *g)(x)=(g *f)(x),并且(f *g)(x)仍为可积函数。这就是说,把卷积代替乘法,L1(R1)1空间是一个代数,甚至是巴拿赫代数。
卷积与傅里叶变换有着密切的关系。以(x) ,(x)表示L1(R)1中f和g的傅里叶变换,那么有如下的关系成立:(f *g)∧(x)=(x)·(x),即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换。这个关系,使傅里叶分析中许多问题的处理得到简化。
由卷积得到的函数(f *g)(x),一般要比f,g都光滑。特别当g为具有紧支集的光滑函数,f 为局部可积时,它们的卷积(f *g)(x)也是光滑函数。利用这一性质,对于任意的可积函数 , 都可以简单地构造出一列*近于f 的光滑函数列fs(x),这种方法称为函数的光滑化或正则化。
卷积的概念还可以推广到数列 、测度以及广义函数上去。
热心网友
时间:2024-12-05 07:04
卷积是一种线性运算,图象处理中常见的mask运算都是卷积,广泛应用于图象滤波。castlman的书对卷积讲得很详细。
高斯变换就是用高斯函数对图象进行卷积。高斯算子可以直接从离散高斯函数得到:
for(i=0; i<N; i++)
{
for(j=0; j<N; j++)
{
g[i*N+j]=exp(-((i-(N-1)/2)^2+(j-(N-1)/2)^2))/(2*delta^2));
sum += g[i*N+j];
}
}
再除以 sum 得到归一化算子
N是滤波器的大小,delta自己选