经典力学与量子力学的区别
发布网友
发布时间:2022-04-29 15:48
我来回答
共3个回答
热心网友
时间:2023-10-16 17:51
1、研究不同:
经典力学是研究宏观物体做低速机械运动的现象和规律的学科。宏观是相对于原子等微观粒子而言的;低速是相对于光速而言的。物体的空间位置随时间变化称为机械运动。人们日常生活直接接触到的并首先加以研究的都是宏观低速的机械运动。
量子力学(Quantum Mechanics)是研究物质世界微观粒子运动规律的物理学分支,主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论它与相对论一起构成现代物理学的理论基础。
2、创立时间不同:
19世纪末,人们发现旧有的经典理论无法解释微观系统,于是经由物理学家的努力,在20世纪初创立量子力学,解释了这些现象。
而早在19世纪,经典力学就已经成为物理学中十分成熟的分支学科,它包含了丰富的内容。例如:质点力学、刚体力学、分析力学、弹性力学、塑性力学、流体力学等。
3、应用范围不同:
经典力学:在许多场合非常准确。经典力学可用于描述人体尺寸物体的运动(如陀螺和棒球),许多天体(如行星和星系)的运动,以及一些微尺度物体(如有机分子)。
在低速运动的物体中,经典力学非常实用,虽然爱因斯坦提出了相对论,但是在生活中,我们几乎不会遇见高速运动(光速级别),因此,我们还是会以经典力学解释各种现象。但是在高速运动或极大质量物体之间,经典力学就 “ 心有余而力不足”了。这也正是现代物理学的范畴。
量子力学:在许多现代技术装备中,量子物理学的效应起了重要的作用。从激光、电子显微镜、原子钟到核磁共振的医学图像显示装置,都关键地依靠了量子力学的原理和效应。
对半导体的研究导致了二极管和三极管的发明,最后为现代的电子工业铺平了道路。在核武器的发明过程中,量子力学的概念也起了一个关键的作用。
热心网友
时间:2023-10-16 17:52
经典力学的基本定律是牛顿运动定律或与牛顿定律有关且等价的其他力学原理,它是20世纪以前的力学,有两个基本假定:其一是假定时间和空间是绝对的,长度和时间间隔的测量与观测者的运动无关,物质间相互作用的传递是瞬时到达的;其二是一切可观测的物理量在原则上可以无限精确地加以测定。20世纪以来,由于物理学的发展,经典力学的局限性暴露出来。如第一个假定,实际上只适用于与光速相比低速运动的情况。在高速运动情况下,时间和长度不能再认为与观测者的运动无关。第二个假定只适用于宏观物体。在微观系统中,所有物理量在原则上不可能同时被精确测定。因此经典力学的定律一般只是宏观物体低速运动时的近似定律。
力学是物理学中发展较早的一个分支。古希腊著名的哲学家亚里士多德曾对“力和运动”提出过许多观点,他的著作一度被当作古代世界学术的百科全书,在西方有着极大的影响,以致他的很多错误观点在长达2000年的岁月中被大多数人所接受。
16世纪以后,人们开始通过科学实验,对力学现象进行准确的研究。许多物理学家、天文学家如哥白尼、布鲁诺、伽利略、开普勒等,做了很多艰巨的工作,力学逐渐摆脱传统观念的束缚,有了很大的进展。
英国科学家牛顿在前人研究和实践的基础上,经过长期的实验观测、数学计算和深入思考,提出了力学三大定律和万有引力定律,把天体力学和地球上物体的力学统一起来,建立了系统的经典力学理论。其主要内容是:
牛顿第一定律:一切物体没有受外力作用时,总保持匀速直线状态或静止状态,直到有外力迫使它改变这种状态为止。
牛顿第二定律:物体的加速度与所受外力成正比,与物体的质量成反比,加速度的方向与合外力的方向相同。公式:F(合)=kma
牛顿第三定律:两个物体之间的作用力与反作用力大小相等,方向相反,并且在同一条直线上。
万有引力定律:自然界中任何两个物体都相互吸引,引力的大小与物体(质点)的质量乘积成正比,与它们之间距离的平方成反比。
量子力学(Quantum Mechanics)是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。量子力学的基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。
在量子力学中,一个物理体系的状态由态函数表示,态函数的任意线性叠加仍然代表体系的一种可能状态。状态随时间的变化遵循一个线性微分方程,该方程预言体系的行为,物理量由满足一定条件的、代表某种运算的算符表示;测量处于某一状态的物理体系的某一物理量的操作,对应于代表该量的算符对其态函数的作用;测量的可能取值由该算符的本征方程决定,测量的期待值由一个包含该算符的积分方程计算。
热心网友
时间:2023-10-16 17:52
解答:
【量子力学】是反映微观粒子结构及其运动规律的科学。它的出现,使物理学发生了巨大变革,一方面使人们对物质的运动有了进一步的认识,另一方面使人们认识到物理理论不是绝对的,而是相对的,有一定的局限性。经典力学描述宏观物质形态的运动规律,而量子力学则描述微观物质形态的运动规律,它们之间有密切联系,又有质的区别。量子力学与经典力学在概念和原理上都存在着许多不同之点,本文试图通过比较、对照,找出它们之间的差异,进一步深人了解量子力学的特殊规律,更好地理解和掌握量子力学的概念和原理。 (一)量子力学研究的对象是微观粒子,
【经典力学】研究的对象是宏观粒子。 经典力学把自然界中的宏观物体作为自己的研究对象,即使是为处理问题的方便而把一些物体看作一个质点,仍然县有大小、质量,描述它的运动状态的参量是坐标、速度、质量和能量等等。量子力学研究的对象是微观粒子(分子、原子、原子核和其它基本粒子)。它的主要任务是研究微观粒子的运动规律。但是,不能误认为量子力学与宏观世界毫无关系。事实上,量子力学的规律不仅支配着微观世界,也支配着宏观世界,在这种意义上,所有的物理学都是量子物理学,经典理沦乃是它的一种近似。
热心网友
时间:2023-10-16 17:51
1、研究不同:
经典力学是研究宏观物体做低速机械运动的现象和规律的学科。宏观是相对于原子等微观粒子而言的;低速是相对于光速而言的。物体的空间位置随时间变化称为机械运动。人们日常生活直接接触到的并首先加以研究的都是宏观低速的机械运动。
量子力学(Quantum Mechanics)是研究物质世界微观粒子运动规律的物理学分支,主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论它与相对论一起构成现代物理学的理论基础。
2、创立时间不同:
19世纪末,人们发现旧有的经典理论无法解释微观系统,于是经由物理学家的努力,在20世纪初创立量子力学,解释了这些现象。
而早在19世纪,经典力学就已经成为物理学中十分成熟的分支学科,它包含了丰富的内容。例如:质点力学、刚体力学、分析力学、弹性力学、塑性力学、流体力学等。
3、应用范围不同:
经典力学:在许多场合非常准确。经典力学可用于描述人体尺寸物体的运动(如陀螺和棒球),许多天体(如行星和星系)的运动,以及一些微尺度物体(如有机分子)。
在低速运动的物体中,经典力学非常实用,虽然爱因斯坦提出了相对论,但是在生活中,我们几乎不会遇见高速运动(光速级别),因此,我们还是会以经典力学解释各种现象。但是在高速运动或极大质量物体之间,经典力学就 “ 心有余而力不足”了。这也正是现代物理学的范畴。
量子力学:在许多现代技术装备中,量子物理学的效应起了重要的作用。从激光、电子显微镜、原子钟到核磁共振的医学图像显示装置,都关键地依靠了量子力学的原理和效应。
对半导体的研究导致了二极管和三极管的发明,最后为现代的电子工业铺平了道路。在核武器的发明过程中,量子力学的概念也起了一个关键的作用。
热心网友
时间:2023-10-16 17:52
经典力学的基本定律是牛顿运动定律或与牛顿定律有关且等价的其他力学原理,它是20世纪以前的力学,有两个基本假定:其一是假定时间和空间是绝对的,长度和时间间隔的测量与观测者的运动无关,物质间相互作用的传递是瞬时到达的;其二是一切可观测的物理量在原则上可以无限精确地加以测定。20世纪以来,由于物理学的发展,经典力学的局限性暴露出来。如第一个假定,实际上只适用于与光速相比低速运动的情况。在高速运动情况下,时间和长度不能再认为与观测者的运动无关。第二个假定只适用于宏观物体。在微观系统中,所有物理量在原则上不可能同时被精确测定。因此经典力学的定律一般只是宏观物体低速运动时的近似定律。
力学是物理学中发展较早的一个分支。古希腊著名的哲学家亚里士多德曾对“力和运动”提出过许多观点,他的著作一度被当作古代世界学术的百科全书,在西方有着极大的影响,以致他的很多错误观点在长达2000年的岁月中被大多数人所接受。
16世纪以后,人们开始通过科学实验,对力学现象进行准确的研究。许多物理学家、天文学家如哥白尼、布鲁诺、伽利略、开普勒等,做了很多艰巨的工作,力学逐渐摆脱传统观念的束缚,有了很大的进展。
英国科学家牛顿在前人研究和实践的基础上,经过长期的实验观测、数学计算和深入思考,提出了力学三大定律和万有引力定律,把天体力学和地球上物体的力学统一起来,建立了系统的经典力学理论。其主要内容是:
牛顿第一定律:一切物体没有受外力作用时,总保持匀速直线状态或静止状态,直到有外力迫使它改变这种状态为止。
牛顿第二定律:物体的加速度与所受外力成正比,与物体的质量成反比,加速度的方向与合外力的方向相同。公式:F(合)=kma
牛顿第三定律:两个物体之间的作用力与反作用力大小相等,方向相反,并且在同一条直线上。
万有引力定律:自然界中任何两个物体都相互吸引,引力的大小与物体(质点)的质量乘积成正比,与它们之间距离的平方成反比。
量子力学(Quantum Mechanics)是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。量子力学的基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。
在量子力学中,一个物理体系的状态由态函数表示,态函数的任意线性叠加仍然代表体系的一种可能状态。状态随时间的变化遵循一个线性微分方程,该方程预言体系的行为,物理量由满足一定条件的、代表某种运算的算符表示;测量处于某一状态的物理体系的某一物理量的操作,对应于代表该量的算符对其态函数的作用;测量的可能取值由该算符的本征方程决定,测量的期待值由一个包含该算符的积分方程计算。
热心网友
时间:2023-10-16 17:52
解答:
【量子力学】是反映微观粒子结构及其运动规律的科学。它的出现,使物理学发生了巨大变革,一方面使人们对物质的运动有了进一步的认识,另一方面使人们认识到物理理论不是绝对的,而是相对的,有一定的局限性。经典力学描述宏观物质形态的运动规律,而量子力学则描述微观物质形态的运动规律,它们之间有密切联系,又有质的区别。量子力学与经典力学在概念和原理上都存在着许多不同之点,本文试图通过比较、对照,找出它们之间的差异,进一步深人了解量子力学的特殊规律,更好地理解和掌握量子力学的概念和原理。 (一)量子力学研究的对象是微观粒子,
【经典力学】研究的对象是宏观粒子。 经典力学把自然界中的宏观物体作为自己的研究对象,即使是为处理问题的方便而把一些物体看作一个质点,仍然县有大小、质量,描述它的运动状态的参量是坐标、速度、质量和能量等等。量子力学研究的对象是微观粒子(分子、原子、原子核和其它基本粒子)。它的主要任务是研究微观粒子的运动规律。但是,不能误认为量子力学与宏观世界毫无关系。事实上,量子力学的规律不仅支配着微观世界,也支配着宏观世界,在这种意义上,所有的物理学都是量子物理学,经典理沦乃是它的一种近似。
热心网友
时间:2023-10-16 17:51
1、研究不同:
经典力学是研究宏观物体做低速机械运动的现象和规律的学科。宏观是相对于原子等微观粒子而言的;低速是相对于光速而言的。物体的空间位置随时间变化称为机械运动。人们日常生活直接接触到的并首先加以研究的都是宏观低速的机械运动。
量子力学(Quantum Mechanics)是研究物质世界微观粒子运动规律的物理学分支,主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论它与相对论一起构成现代物理学的理论基础。
2、创立时间不同:
19世纪末,人们发现旧有的经典理论无法解释微观系统,于是经由物理学家的努力,在20世纪初创立量子力学,解释了这些现象。
而早在19世纪,经典力学就已经成为物理学中十分成熟的分支学科,它包含了丰富的内容。例如:质点力学、刚体力学、分析力学、弹性力学、塑性力学、流体力学等。
3、应用范围不同:
经典力学:在许多场合非常准确。经典力学可用于描述人体尺寸物体的运动(如陀螺和棒球),许多天体(如行星和星系)的运动,以及一些微尺度物体(如有机分子)。
在低速运动的物体中,经典力学非常实用,虽然爱因斯坦提出了相对论,但是在生活中,我们几乎不会遇见高速运动(光速级别),因此,我们还是会以经典力学解释各种现象。但是在高速运动或极大质量物体之间,经典力学就 “ 心有余而力不足”了。这也正是现代物理学的范畴。
量子力学:在许多现代技术装备中,量子物理学的效应起了重要的作用。从激光、电子显微镜、原子钟到核磁共振的医学图像显示装置,都关键地依靠了量子力学的原理和效应。
对半导体的研究导致了二极管和三极管的发明,最后为现代的电子工业铺平了道路。在核武器的发明过程中,量子力学的概念也起了一个关键的作用。
热心网友
时间:2023-10-16 17:52
经典力学的基本定律是牛顿运动定律或与牛顿定律有关且等价的其他力学原理,它是20世纪以前的力学,有两个基本假定:其一是假定时间和空间是绝对的,长度和时间间隔的测量与观测者的运动无关,物质间相互作用的传递是瞬时到达的;其二是一切可观测的物理量在原则上可以无限精确地加以测定。20世纪以来,由于物理学的发展,经典力学的局限性暴露出来。如第一个假定,实际上只适用于与光速相比低速运动的情况。在高速运动情况下,时间和长度不能再认为与观测者的运动无关。第二个假定只适用于宏观物体。在微观系统中,所有物理量在原则上不可能同时被精确测定。因此经典力学的定律一般只是宏观物体低速运动时的近似定律。
力学是物理学中发展较早的一个分支。古希腊著名的哲学家亚里士多德曾对“力和运动”提出过许多观点,他的著作一度被当作古代世界学术的百科全书,在西方有着极大的影响,以致他的很多错误观点在长达2000年的岁月中被大多数人所接受。
16世纪以后,人们开始通过科学实验,对力学现象进行准确的研究。许多物理学家、天文学家如哥白尼、布鲁诺、伽利略、开普勒等,做了很多艰巨的工作,力学逐渐摆脱传统观念的束缚,有了很大的进展。
英国科学家牛顿在前人研究和实践的基础上,经过长期的实验观测、数学计算和深入思考,提出了力学三大定律和万有引力定律,把天体力学和地球上物体的力学统一起来,建立了系统的经典力学理论。其主要内容是:
牛顿第一定律:一切物体没有受外力作用时,总保持匀速直线状态或静止状态,直到有外力迫使它改变这种状态为止。
牛顿第二定律:物体的加速度与所受外力成正比,与物体的质量成反比,加速度的方向与合外力的方向相同。公式:F(合)=kma
牛顿第三定律:两个物体之间的作用力与反作用力大小相等,方向相反,并且在同一条直线上。
万有引力定律:自然界中任何两个物体都相互吸引,引力的大小与物体(质点)的质量乘积成正比,与它们之间距离的平方成反比。
量子力学(Quantum Mechanics)是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。量子力学的基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。
在量子力学中,一个物理体系的状态由态函数表示,态函数的任意线性叠加仍然代表体系的一种可能状态。状态随时间的变化遵循一个线性微分方程,该方程预言体系的行为,物理量由满足一定条件的、代表某种运算的算符表示;测量处于某一状态的物理体系的某一物理量的操作,对应于代表该量的算符对其态函数的作用;测量的可能取值由该算符的本征方程决定,测量的期待值由一个包含该算符的积分方程计算。
热心网友
时间:2023-10-16 17:52
解答:
【量子力学】是反映微观粒子结构及其运动规律的科学。它的出现,使物理学发生了巨大变革,一方面使人们对物质的运动有了进一步的认识,另一方面使人们认识到物理理论不是绝对的,而是相对的,有一定的局限性。经典力学描述宏观物质形态的运动规律,而量子力学则描述微观物质形态的运动规律,它们之间有密切联系,又有质的区别。量子力学与经典力学在概念和原理上都存在着许多不同之点,本文试图通过比较、对照,找出它们之间的差异,进一步深人了解量子力学的特殊规律,更好地理解和掌握量子力学的概念和原理。 (一)量子力学研究的对象是微观粒子,
【经典力学】研究的对象是宏观粒子。 经典力学把自然界中的宏观物体作为自己的研究对象,即使是为处理问题的方便而把一些物体看作一个质点,仍然县有大小、质量,描述它的运动状态的参量是坐标、速度、质量和能量等等。量子力学研究的对象是微观粒子(分子、原子、原子核和其它基本粒子)。它的主要任务是研究微观粒子的运动规律。但是,不能误认为量子力学与宏观世界毫无关系。事实上,量子力学的规律不仅支配着微观世界,也支配着宏观世界,在这种意义上,所有的物理学都是量子物理学,经典理沦乃是它的一种近似。