洛朗级数性质
发布网友
发布时间:2022-05-16 08:05
我来回答
共1个回答
热心网友
时间:2023-10-16 03:52
复变函数f(z)的洛朗(Laurent)级数,是幂级数的一种,它不仅包含了正数次数的项,也包含了负数次数的项。有时无法把函数表示为泰勒(Taylor)级数,但可以表示为洛朗级数。积分路径γ是一条逆时针方向的可求长曲线,把c包围起来,位于圆环A内,在这个圆环内f(z)是全纯函数。在实践中,上述的积分公式可能不是计算给定的函数系数最实用的方法;相反,人们常常通过拼凑已知的泰勒展开式来求出洛朗级数。用−1/x替换指数函数的幂级数展开式中的x,我们得到其洛朗级数,对于除了奇点X = 0以外的所有复数,它都收敛并等于ƒ(x)。
函数f(z)关于点c的洛朗级数由下式给出:
由以下的路径积分定义,它是柯西积分公式的推广:
积分路径γ是一条逆时针方向的可求长曲线,把c包围起来,位于圆环A内,在这个圆环内f(z)是全纯函数。f(z)的洛朗级数展开式在这个圆环内的任何地方都是正确的。
在数学中,复变函数f(z)的洛朗级数,是幂级数的一种,它不仅包含了正数次数的项,也包含了负数次数的项。有时无法把函数表示为泰勒级数,但可以表示为洛朗级数。洛朗级数是由Pierre Alphonse Laurent在1843年首次发表并以他命名的。卡尔·魏尔斯特拉斯可能是更早发现这个级数的人,但他1841年的论文在他死后才发表于世。
函数f(z)关于点c的洛朗级数由下式给出:
其中an是常数,由以下的路径积分定义,它是柯西积分公式的推广:
积分路径γ是位于圆环A内的一条逆时针方向的可求长曲线,把c包围起来,在这个圆环内是全纯的(解析的)。的洛朗级数展开式在这个圆环内的任何地方都是正确的。在右边的图中,该环用红色显示,其内有一合适的积分路径 。如果我们让是一个圆 ,其中 ,这就相当于要计算的*到上的复傅里叶系数。这些积分不随轮廓的变形而改变是斯托克斯定理的直接结果。