发布网友 发布时间:2022-05-12 16:27
共1个回答
热心网友 时间:2023-10-13 13:18
⑴在函数x=f -1(y)中,y是自变量,x是函数,但习惯上,我们一般用x表示自变量,用y 表示函数,为此我们常常对调函数x=f -1(y)中的字母x,y,把它改写成y=f -1(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种经过改写的形式。
⑵反函数也是函数,因为它符合函数的定义. 从反函数的定义可知,对于任意一个函数y=f(x)来说,不一定有反函数,若函数y=f(x)有反函数y=f -1(x),那么函数y=f -1(x)的反函数就是y=f(x),这就是说,函数y=f(x)与y=f -1(x)互为反函数。
⑶互为反函数的两个函数在各自定义域内有相同的单调性。单调函数一定有反函数,如二次函数在R内不是反函数,但在其单调增(减)的定义域内,可以求反函数;另外,f(x)=1/x等函数不单调,也可求反函数。
⑷ 从映射的定义可知,函数y=f(x)是定义域A到值域C的映射,而它的反函数y=f -1(x)是集合C到集合A的映射,因此,函数y=f(x)的定义域正好是它的反函数y=f -1(x)的值域;函数y=f(x)的值域正好是它的反函数y=f -1(x)的定义域(如下表):
函数:y=f(x);
反函数:y=f -1(x);
定义域: A C;
值域: C A;
⑷上述定义用“逆”映射概念可叙述为:
若确定函数y=f(x)的映射f是函数的定义域到值域上”的“一一映射”,那么由f的“逆”映射f -1所确定的函数y=f -1(x)就叫做函数y=f(x)的反函数. 反函数y=f -1(x)的定义域、值域分别对应原函数y=f(x)的值域、定义域.。开始的两个例子:s=vt记为f(t)=vt,则它的反函数就可以写为f -1(s)=s/v,同样y=2x+6记为f(x)=2x+6,则它的反函数为:f -1(x)=x/2-3.
有时是反函数需要进行分类讨论,如:f(x)=x+1/x,需将x进行分类讨论:在x大于0时的情况,x小于0的情况,多是要注意的。一般分数函数的反函数的表示为y=ax+b/cx+d(a/c不等于b/d)--y=b-dx/cx+a