菲薄纳西数列是怎么回事
发布网友
发布时间:2022-04-20 07:16
我来回答
共4个回答
懂视网
时间:2022-04-20 11:38
斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……,简单来说,斐波那契数列就是一系列元素,前两个元素相加得到下一个元素,从0和1开始。
PHP如何实现斐波那契数列?
在本文中,我们将给大家介绍如何用PHP实现斐波那契数列。给定一个数字n,我们需要找到斐波那契数列直到第n项。
例子:
输入:10
输出:0 1 1 2 3 5 8 13 21 34
输入:15
输出:0 1 1 2 3 5 8 13 21 34 55 89 144 233 377
热心网友
时间:2022-04-20 08:46
斐波那契数列
一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子?
我们不妨拿新出生的一对小兔子分析一下:
第一个月小兔子没有繁殖能力,所以还是一对;
两个月后,生下一对小兔民数共有两对;
三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对;
依次类推可以列出下表:
所经过月数:0、1、2、3、4、5、6、7、8、9、10、11、12
兔子对数:1、1、2、3、5、8、13、21、34、55、89、144、233
表中数字1,1,2,3,5,8---构成了一个序列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。
这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)/的性质外,还可以证明通项公式为:an=1/√[(1+√5/2) n-(1-√5/2) n](n=1,2,3.....)
这个通项公式中虽然所有的an都是正整数,可是它们却是由一些无理数表示出来的。
斐波那契数列还有两个有趣的性质:
1.斐波那契数列中任一项的平方数都等于跟它相邻的前后两项的乘积加1或减1;
2.任取相邻的四个斐波那契数,中间两数之积(内积)与两边两数之积(外积)相差1.
同样我们还可以有t阶斐波那契数列,通过递推数列a(n+t)=a(n+t-1)+a(n+t-2)+...+a(n),其中a(1)=a(2)=1,以及对于3-t<=n<=0,有a(n)=0.
在链接http://bbs.emath.ac.cn/viewthread.php?tid=667&page=3&fromuid=20#pid8349中mathe给出了t阶斐波那契数列的通项公式:
[r^(n-1)(r-1)/((t+1)r-2t)], 其中r是方程x^{t+1}-2x^t+1=0的唯一一个大于1的正数根(可以看出r非常接近2)
热心网友
时间:2022-04-20 10:04
斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……
这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(又叫“比内公式”,是用无理数表示有理数的一个范例。)(√5表示根号5)
有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。
热心网友
时间:2022-04-20 11:38
应该是斐波那契数列就是后一个数等于前两个书之和1 1 2 3 5 8 13 21