发布网友 发布时间:2022-04-21 21:53
共1个回答
热心网友 时间:2023-06-22 19:43
HDFS(Hadoop Distributed File System)是Hadoop项目的核心子项目,是分布式计算中数据存储管理的基础,是基于流数据模式访问和处理超大文件的需求而开发的,可以运行于廉价的商用服务器上。
HDFS 具有以下优点:
1、高容错性
数据自动保存多个副本。它通过增加副本的形式,提高容错性。某一个副本丢失以后,它可以自动恢复,这是由 HDFS 内部机制实现的,我们不必关心。
2、适合批处理
它是通过移动计算而不是移动数据。它会把数据位置暴露给计算框架。
3、适合大数据处理
处理数据达到 GB、TB、甚至PB级别的数据。能够处理百万规模以上的文件数量,数量相当之大。能够处理10K节点的规模。
4、流式文件访问
一次写入,多次读取。文件一旦写入不能修改,只能追加。它能保证数据的一致性。
5、可构建在廉价机器上
它通过多副本机制,提高可靠性。它提供了容错和恢复机制。比如某一个副本丢失,可以通过其它副本来恢复。
HDFS 也有它的劣势,并不适合所有的场合:
1、低延时数据访问
比如毫秒级的来存储数据,这是不行的,它做不到。它适合高吞吐率的场景,就是在某一时间内写入大量的数据。但是它在低延时的情况下是不行的,比如毫秒级以内读取数据,这样它是很难做到的。
2、小文件存储
存储大量小文件(这里的小文件是指小于HDFS系统的Block大小的文件(默认64M))的话,它会占用 NameNode大量的内存来存储文件、目录和块信息。这样是不可取的,因为NameNode的内存总是有限的。
3、并发写入、文件随机修改
一个文件只能有一个写,不允许多个线程同时写。仅支持数据 append(追加),不支持文件的随机修改。