发布网友 发布时间:2022-05-15 00:40
共1个回答
热心网友 时间:2023-11-15 23:02
1.3.2.1 地下水脆弱性与污染风险的概念
地下水脆弱性指由于自然条件变化或人类活动影响,地下水遭受破坏的趋向和可能性,它反映了地下水对自然和(或)人类活动影响的应付能力,地下水脆弱性一般分为固有脆弱性和特殊脆弱性。
地下水污染风险是指地下水受到污染的概率及污染预期损害程度的叠加。它表示含水层中地下水由于地表的直接活动造成污染的概率。这种污染是基于地下水的用途而制定的一系列标准而言。当污染指标超过该地下水用途所规定的指标时,视其为污染。合并地下水污染源灾害分级图和地下水固有脆弱性图来代替地下水污染的概率,用地下水价值图来代替地下水污染的预期损害性。因此,地下水污染风险性高是指高价值的地下水资源受到灾害性高的污染源的污染。
1.3.2.2 地下水脆弱性及污染风险影响因素
地下水系统是个开放系统,系统变化除了受到含水层系统和地下水流动系统的影响,还受到地表状况、大气、土壤、包气带等过程的影响。表1.1详细列出了可能影响地下水脆弱性各类影响因素。
地下水污染风险影响因素除了表1.1中所列,还包括污染源的各种特征,如污染源种类、排放方式、排放量、特征污染物类别和性质、排放规模以及防护措施等。
表1.1 地下水脆弱性影响因素表
1.3.2.3 地下水脆弱性评价方法
地下水脆弱性的研究程度较高,评价方法较为成熟,目前国内外已有的评价方法主要有迭置指数法、过程模拟法、统计方法、模糊数学方法以及各种方法的综合等,具体信息见表1.2。
迭置指数法是通过选取的评价参数的分指数进行叠加,形成一个反映脆弱性程度的综合指数,包括指标、权重、值域和分级。它又分为水文地质背景参数法(HCS)和参数系统法,后者又包括矩阵系统(MS)、标定系统(RS)和计点系统模型(PCSM)。
表1.2 地下水脆弱性评价的主要方法表
国外对地下水脆弱性评价采取的模型主要包括:DRASTIC(Aller et al.,1987)、GOD(Foster,1987)、SINTACS(Civita,1993)、ISIS(Civita and De Regibus,1995)、Legrand、SEEPAGE(Gogu,2000)等。针对岩溶含水层的脆弱性评价模型有 GLA 法(Holting et al.,1995)、EPIK(Doerfliger et al.,1997)、PI(Goldscheider,2005)等。
目前,DRASTIC模型应用最为广泛(表1.3)。它假设污染物由地表起经土壤层、包气带进入含水层,污染物随降雨入渗到地下水中,污染物随水流动。DRASTIC 模型由7个水文地质评价参数组成,分别为:含水层埋深(D)、净补给量(R)、含水层介质(A)、土壤介质(S)、地形坡度(T)、包气带介质的影响(I)及水力传导系数(C)。模型中每个指标都分成几个区段(对于连续变量)或几种主要介质类型(对于文字描述性指标),每个区段根据其在指标内的相对重要性赋予评分,评分范围为1~10分。每个指标根据其对脆弱性影响重要性赋予相应权重,最后脆弱性指数为7个指标的加权综合,记为DI,值越高,地下水脆弱性越高,反之脆弱性越低。
DI=DRDW+RRRW+ARAW+SRSW+TRTW+IRIW+CRCW(1.2)
式中:R——指标值;
W——指标的权重。
该模型通过增减指标的改进模型应用于美国各地、加拿大、南非、欧共体的各地潜水和承压水脆弱性评价。从表1.4中可看出,许多学者多将土地利用类型指标纳入评价指标体系中,并取得了更加客观的评价结果。不同的土地利用类型对于污染物进入到含水层的影响作用是不同的,它可以改变污染物的种类、数量和污染物进入含水层路径的长度和途径。
表1.3DRASTIC模型及农药DRASTIC模型中各指标权重表
(据Aller et al.,1987)
表1.4 地下水污染风险定义的发展历程表
国内研究者根据不同地区自然属性特征和污染物特征提出了3~11个不等的指标,采用不同的方法对权重加以优化,然后借助GIS技术或模糊数学方法进行地下水脆弱性分区。
过程模拟法是在水分和污染物运移模型基础上,建立一个脆弱性评价数学公式,将各评价因子定量化后,得出区域脆弱性综合指数。过程模拟法研究地下水脆弱性,不仅可以告诉决策者哪里可能会发生污染,而且会表明为什么会发生污染,什么时间可能发生污染,从污染机理上研究了污染物对于地下水系统影响程度和过程。认识地下水的来源和运动是过程模拟法研究地下水本质脆弱性的重点,关注污染物的来源、运移和转化是特殊脆弱性的评价重点。
统计方法是通过对已有的地下水污染信息和资料进行数理统计分析,确定地下水脆弱评价因子并用分析方程表示出来,把已赋值的各评价因子放入方程中计算,然后根据其结果进行脆弱性分析。利用统计方法解决非点源的地下水脆弱性在近几年中研究很多,逻辑衰减和贝叶斯方法是最常用的方法。常用的模型包括逻辑回归分析、线性回归分析法、克里格方法、实证权重法。目前统计法不如迭置指数法和过程模拟法应用广泛。
总的来说,国内外对地下水污染风险评价采用的主要方法是基于地下水脆弱性评价,在其基础上,增加诸如土地利用状况、污染源分布、污染源危害分级、地下水社会经济价值、开采井的集水范围等相关指标。但总体上,缺乏系统的地下水污染风险评价方法与参数体系。地下水污染风险不仅没有一个公认的定义,而且地下水污染风险评价所涉及的评价内容和方法在不断地探索、深入,但远远没有完善,更没有形成规范性的技术体系。
1.3.2.4 地下水污染风险评价方法
最初脆弱性研究只关注地下水系统的固有脆弱性或者叫易污性,随着研究的深入,人们关注的焦点转向了地下水系统抵御污染源荷载的脆弱性,称为特殊脆弱性。特殊脆弱性对污染源荷载比较敏感,污染源的轻微变化就能导致系统的变化;特殊脆弱性一般表现为污染源荷载作用下系统所遭受损失的大小或程度;特殊脆弱性与人类活动关系密切,人类的各种排污活动增加了自然系统的特殊脆弱性,相反减排和环境保护措施则会减小对自然系统的扰动。目前,国内外学者关于脆弱性的研究主要集中在3个方面:系统固有脆弱性的研究、系统特殊脆弱性研究和区域灾害脆弱性研究。关于地下水污染风险国际上还没有形成统一的定义,其发展历程见表1.4。
针对地下水系统,污染源荷载是指点源、面源等各种污染源对地下水造成污染的可能性和危害后果的严重性,影响污染源荷载的主要因素有污染源的量、排放或泄漏位置、污染源的类型、毒性、开采井的位置、开采层位,以及污染物在土壤和地下水中的迁移转化特征等。污染源荷载的大小反映污染源对地下水造成污染的可能性大小。
存在的主要问题:地下水污染风险评价是近十年来才成为的一个正式的概念,而且至今没有一个公认的定义。地下水污染风险评价所涉及的评价内容在不断地探索、深入,但远远没有完善,更没有形成规范性的技术体系;而且地下水污染风险评价一般是建立在地下水脆弱性评价的基础上,这样所评价的地下水污染风险往往只是在空间层面上,而对于时间上的风险评价往往很少提及。
可见,地下水污染风险评价所涉及内容及技术体系的完善化、规范化及地下水污染风险在时间层面的评价是地下水污染风险评价可能的发展方向。