多普勒效应公式推导
发布网友
发布时间:2022-05-14 04:20
我来回答
共2个回答
热心网友
时间:2023-07-07 23:51
多普勒效应指出,波在波源移向观察者时接收频率变高,而在波源远离观察者时接收频率变低。当观察者移动时也能得到同样的结论。但是由于缺少实验设备,多普勒当时没有用实验验证、几年后有人请一队小号手在平板车上演奏,再请训练有素的音乐家用耳朵来辨别音调的变化,以验证该效应。假设原有波源的波长为λ,波速为c,观察者移动速度为v:
当观察者走近波源时观察到的波源频率为(c v)/λ,如果观察者远离波源,则观察到的波源频率为(c-v)/λ。
一个常被使用的例子是火车的汽笛声,当火车接近观察者时,其汽鸣声会比平常更刺耳.你可以在火车经过时听出刺耳声的变化。同样的情况还有:警车的警报声和赛车的发动机声。
如果把声波视为有规律间隔发射的脉冲,可以想象若你每走一步,便发*一个脉冲,那么在你之前的每一个脉冲都比你站立不动时更接近你自己。而在你后面的声源则比原来不动时远了一步。或者说,在你之前的脉冲频率比平常变高,而在你之后的脉冲频率比平常变低了。
多普勒效应不仅仅适用于声波,它也适用于所有类型的波,包括电磁波。科学家爱德文·哈勃(Edwin Hubble)使用多普勒效应得出宇宙正在膨胀的结论。他发现远离银河系的天体发射的光线频率变低,即移向光谱的红端,称为红移,天体离开银河系的速度越快红移越大,这说明这些天体在远离银河系。反之,如果天体正移向银河系,则光线会发生蓝移。
在移动通信中,当移动台移向基站时,频率变高,远离基站时,频率变低,所以我们在移动通信中要充分考虑多普勒效应。当然,由于日常生活中,我们移动速度的局限,不可能会带来十分大的频率偏移,但是这不可否认地会给移动通信带来影响,为了避免这种影响造成我们通信中的问题,我们不得不在技术上加以各种考虑。也加大了移动通信的复杂性。
在单色的情况下,我们的眼睛感知的颜色可以解释为光波振动的频率,或者解释为,在1秒钟内电磁场所交替为变化的次数。在可见区域,这种效率越低,就越趋向于红色,频率越高的,就趋向于蓝色——紫色。比如,由氦——氖激光所产生的鲜红色对应的频率为4.74×10^14赫兹,而汞灯的紫色对应的频率则在7×10^14赫兹以上。这个原则同样适用于声波:声音的高低的感觉对应于声音对耳朵的鼓膜施加压力的振动频率(高频声音尖厉,低频声音低沉)。
如果波源是固定不动的,不动的接收者所接收的波的振动与波源发射的波的节奏相同:发射频率等于接收频率。如果波源相对于接收者来说是移动的,比如相互远离,那么情况就不一样了。相对于接收者来说,波源产生的两个波峰之间的距离拉长了,因此两上波峰到达接收者所用的时间也变长了。那么到达接收者时频率降低,所感知的颜色向红色移动(如果波源向接收者靠近,情况则相反)。为了让读者对这个效应的影响大小有个概念,在显示了多普勒频移,近似给出了一个正在远离的光源在相对速度变化时所接收到的频率。例如,在上面提到的氦——氖激光的红色谱线,当波源的速度相当于光速的一半时,接收到的频率由4.74×10^14赫兹下降到4.74×10^14赫兹,这个数值大幅度地降移到红外线的频段
热心网友
时间:2023-07-07 23:52
设声源S,观察者L分别以速度Vs,Vl在静止的介质中沿同一直线同向运动,声源发出声波在介质中的传播速度为V,且Vs小于V,Vl小于V。当声源不动时,声源发现频率为f,波长为X的声波,观察者接受到的声波的频率为:
f'=(V-Vl)V/[(V-Vs)X]=(V-Vl)f/(V-Vs)
所以得 (1)当观察者和波源都不动时,Vs=0,Vl=0,由上式得f'=f
(2)当观察者不动,声源接近观察者时,观察者接受到的频率为
F=Vf/(V-Vs) 显然此时频率大于原来的频率